请帮我找找用于生成环境声音的WaveGAN-PyTorch的代码及代码解释
时间: 2023-12-10 21:37:42 浏览: 146
WaveGAN是一种基于GAN的生成模型,用于生成逼真的音频信号。在这里,我将为你提供WaveGAN-PyTorch的代码及代码解释。
首先,我们需要安装PyTorch和相应的依赖项。如果你已经安装了PyTorch,你可以跳过此步骤。
```python
!pip install torch
!pip install librosa
!pip install tqdm
!pip install tensorboardX
```
接下来,我们可以开始编写代码。在这里,我将提供一个简单的WaveGAN模型,用于生成环境声音。
首先,我们需要导入所需的包:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import librosa
import librosa.display
import matplotlib.pyplot as plt
from tqdm import tqdm
from tensorboardX import SummaryWriter
```
然后,我们定义一些常量和超参数:
```python
SAMPLE_RATE = 22050
N_FFT = 1024
HOP_LENGTH = 512
N_MELS = 128
N_CHANNELS = 16
LATENT_DIM = 100
BATCH_SIZE = 64
N_EPOCHS = 100
LEARNING_RATE = 0.0002
BETA1 = 0.5
BETA2 = 0.999
EPSILON = 1e-8
```
接下来,我们定义生成器和判别器:
```python
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.fc1 = nn.Linear(LATENT_DIM, 4 * 4 * 512, bias=False)
self.bn1 = nn.BatchNorm1d(4 * 4 * 512)
self.up1 = nn.Upsample(scale_factor=2, mode='nearest')
self.conv1 = nn.Conv1d(512, 256, kernel_size=9, stride=1, padding=4, bias=False)
self.bn2 = nn.BatchNorm1d(256)
self.up2 = nn.Upsample(scale_factor=2, mode='nearest')
self.conv2 = nn.Conv1d(256, 128, kernel_size=9, stride=1, padding=4, bias=False)
self.bn3 = nn.BatchNorm1d(128)
self.up3 = nn.Upsample(scale_factor=2, mode='nearest')
self.conv3 = nn.Conv1d(128, 64, kernel_size=9, stride=1, padding=4, bias=False)
self.bn4 = nn.BatchNorm1d(64)
self.conv4 = nn.Conv1d(64, N_CHANNELS, kernel_size=9, stride=1, padding=4)
def forward(self, x):
x = self.fc1(x)
x = F.leaky_relu(self.bn1(x), negative_slope=0.2)
x = x.view(-1, 512, 4)
x = self.up1(x)
x = self.conv1(x)
x = F.leaky_relu(self.bn2(x), negative_slope=0.2)
x = self.up2(x)
x = self.conv2(x)
x = F.leaky_relu(self.bn3(x), negative_slope=0.2)
x = self.up3(x)
x = self.conv3(x)
x = F.leaky_relu(self.bn4(x), negative_slope=0.2)
x = self.conv4(x)
return x
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.conv1 = nn.Conv1d(N_CHANNELS, 64, kernel_size=9, stride=1, padding=4, bias=False)
self.bn1 = nn.BatchNorm1d(64)
self.conv2 = nn.Conv1d(64, 128, kernel_size=9, stride=1, padding=4, bias=False)
self.bn2 = nn.BatchNorm1d(128)
self.conv3 = nn.Conv1d(128, 256, kernel_size=9, stride=1, padding=4, bias=False)
self.bn3 = nn.BatchNorm1d(256)
self.conv4 = nn.Conv1d(256, 512, kernel_size=9, stride=1, padding=4, bias=False)
self.bn4 = nn.BatchNorm1d(512)
self.fc1 = nn.Linear(4 * 4 * 512, 1)
def forward(self, x):
x = self.conv1(x)
x = F.leaky_relu(self.bn1(x), negative_slope=0.2)
x = self.conv2(x)
x = F.leaky_relu(self.bn2(x), negative_slope=0.2)
x = self.conv3(x)
x = F.leaky_relu(self.bn3(x), negative_slope=0.2)
x = self.conv4(x)
x = F.leaky_relu(self.bn4(x), negative_slope=0.2)
x = x.view(-1, 4 * 4 * 512)
x = self.fc1(x)
x = torch.sigmoid(x)
return x
```
接下来,我们定义一些辅助函数:
```python
def preprocess_audio(audio):
spectrogram = librosa.feature.melspectrogram(audio, sr=SAMPLE_RATE, n_fft=N_FFT, hop_length=HOP_LENGTH, n_mels=N_MELS)
spectrogram = librosa.power_to_db(spectrogram, ref=np.max)
spectrogram = np.expand_dims(spectrogram, axis=0)
return spectrogram
def generate_latent_vectors(n_samples):
return torch.randn(n_samples, LATENT_DIM)
def generate_samples(generator, n_samples):
latent_vectors = generate_latent_vectors(n_samples)
with torch.no_grad():
samples = generator(latent_vectors)
return samples
def save_samples(samples, filename):
samples = samples.detach().cpu().numpy()
samples = samples.reshape(-1, N_CHANNELS, int(N_FFT / 2) + 1)
samples = np.transpose(samples, (0, 2, 1))
samples = np.ascontiguousarray(samples)
audio = librosa.feature.inverse.mel_to_audio(samples, sr=SAMPLE_RATE, n_fft=N_FFT, hop_length=HOP_LENGTH, n_mels=N_MELS)
librosa.output.write_wav(filename, audio, sr=SAMPLE_RATE)
def plot_samples(samples):
samples = samples.detach().cpu().numpy()
samples = samples.reshape(-1, N_CHANNELS, int(N_FFT / 2) + 1)
for i in range(samples.shape[0]):
plt.figure()
librosa.display.specshow(samples[i].T, sr=SAMPLE_RATE, hop_length=HOP_LENGTH, x_axis='time', y_axis='mel')
plt.colorbar(format='%+2.0f dB')
plt.title('Sample %d' % i)
plt.tight_layout()
plt.show()
```
然后,我们定义训练过程:
```python
def train(generator, discriminator):
generator_optimizer = torch.optim.Adam(generator.parameters(), lr=LEARNING_RATE, betas=(BETA1, BETA2), eps=EPSILON)
discriminator_optimizer = torch.optim.Adam(discriminator.parameters(), lr=LEARNING_RATE, betas=(BETA1, BETA2), eps=EPSILON)
criterion = nn.BCELoss()
writer = SummaryWriter()
fixed_latent_vectors = generate_latent_vectors(16)
for epoch in range(N_EPOCHS):
generator.train()
discriminator.train()
for i in tqdm(range(0, len(train_data), BATCH_SIZE)):
discriminator_optimizer.zero_grad()
real_samples = train_data[i:i + BATCH_SIZE]
real_samples = torch.from_numpy(real_samples).float().to(device)
real_labels = torch.ones(len(real_samples), 1).to(device)
fake_samples = generate_samples(generator, len(real_samples))
fake_labels = torch.zeros(len(fake_samples), 1).to(device)
discriminator_loss_real = criterion(discriminator(real_samples), real_labels)
discriminator_loss_real.backward()
discriminator_loss_fake = criterion(discriminator(fake_samples), fake_labels)
discriminator_loss_fake.backward()
discriminator_loss = discriminator_loss_real + discriminator_loss_fake
discriminator_optimizer.step()
generator_optimizer.zero_grad()
latent_vectors = generate_latent_vectors(len(real_samples))
generated_samples = generator(latent_vectors)
generator_loss = criterion(discriminator(generated_samples), real_labels)
generator_loss.backward()
generator_optimizer.step()
generator.eval()
discriminator.eval()
samples = generate_samples(generator, 16)
save_samples(samples, 'samples/sample_%03d.wav' % epoch)
plot_samples(samples)
writer.add_scalar('Generator Loss', generator_loss, epoch)
writer.add_scalar('Discriminator Loss', discriminator_loss, epoch)
writer.add_image('Generated Samples', samples, epoch)
writer.add_image('Real Samples', real_samples[:16], epoch)
writer.close()
```
最后,我们可以加载数据并开始训练:
```python
audio_files = ['file1.wav', 'file2.wav', 'file3.wav']
train_data = []
for filename in audio_files:
audio, _ = librosa.load(filename, sr=SAMPLE_RATE)
spectrogram = preprocess_audio(audio)
train_data.append(spectrogram)
train_data = np.concatenate(train_data, axis=0)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
generator = Generator().to(device)
discriminator = Discriminator().to(device)
train(generator, discriminator)
```
这就是WaveGAN-PyTorch的代码及代码解释。希望这可以帮助到你!
阅读全文