pandas中dropna函数
时间: 2023-11-06 13:53:49 浏览: 112
详解pandas删除缺失数据(pd.dropna()方法)
dropna函数是pandas库中用于删除DataFrame数据中缺失值的函数。它可以根据指定的参数来删除包含缺失值的行或列。具体的参数说明如下:
1. axis参数用于指定删除数据的维度,默认为0,表示删除包含缺失值的行。
2. how参数用于指定删除的条件,可选值为"any"和"all"。当how="any"时,表示删除包含任意一个缺失值的行;当how="all"时,表示只删除全为缺失值的行。
3. thresh参数是一个整数,表示保留至少thresh个非缺失值的行。
4. subset参数是一个列表,用于在特定的列中处理缺失值。
5. inplace参数是一个布尔值,表示是否修改源文件。默认为False,即不修改源文件,而是返回一个新的DataFrame。
下面是一个例子,展示了如何使用dropna函数删除包含缺失值的行:
```python
import pandas as pd
import numpy as np
df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], "toy": [np.nan, 'Batmobile', 'Bullwhip'], "born": [pd.NaT, pd.Timestamp("1940-04-25"), pd.NaT]})
print(df)
df_new = df.dropna()
print(df_new)
```
在上述例子中,原始数据包含3行,其中第0行和第2行有缺失值。通过调用dropna函数,我们得到了删除了缺失值的新DataFrame。
阅读全文