python利用OpenCV拼接四张图像

时间: 2023-10-12 08:16:21 浏览: 118
以下是python利用OpenCV拼接四张图像的示例代码: ```python import cv2 # 读取四张图像,注意需要保证四张图像的尺寸一致 img1 = cv2.imread('image1.jpg') img2 = cv2.imread('image2.jpg') img3 = cv2.imread('image3.jpg') img4 = cv2.imread('image4.jpg') # 将四张图像拼接成一张大图像,按照从左到右、从上到下的顺序排列 result = cv2.vconcat([cv2.hconcat([img1, img2]), cv2.hconcat([img3, img4])]) # 显示拼接后的图像 cv2.imshow('result', result) cv2.waitKey(0) cv2.destroyAllWindows() ``` 上述代码中,使用了OpenCV的`cv2.imread()`函数读取四张图像,然后利用`cv2.hconcat()`和`cv2.vconcat()`函数将这四张图像拼接成一张大图像。其中,`cv2.hconcat()`函数可以将两张图像水平拼接,`cv2.vconcat()`函数可以将两张图像垂直拼接。最后,使用`cv2.imshow()`函数显示拼接后的图像。
相关问题

python opencv拼接多张带角度图片

在使用Python和OpenCV拼接多张带角度的图片时,可以按照以下步骤进行操作: 首先,导入OpenCV库和NumPy库,确保安装了这两个库。 接下来,读取多张图片,可以使用OpenCV的cv2.imread()函数,将图片路径作为参数传入,读取图片并储存在变量中。 然后,使用OpenCV的cv2.resize()函数,将所有的图片统一调整为相同的大小,以便进行拼接。可以选择将目标图片的大小作为参数传入,也可以指定一个统一的大小。 接下来,对于所有的图片,例如可以先选择其中一张作为基准图像,然后将其他图片与基准图像进行角度旋转的拼接。可以使用OpenCV的cv2.warpAffine()函数,传入待旋转的图片、旋转矩阵和目标大小作为参数。旋转矩阵可以使用OpenCV的cv2.getRotationMatrix2D()函数,将旋转中心、旋转角度和缩放因子作为参数传入。 最后,将拼接后的图片保存为新的图片文件,可以使用OpenCV的cv2.imwrite()函数,传入保存路径和拼接后的图片作为参数进行保存。 需要注意的是,拼接的结果可能受到图片的尺寸、角度差异等因素的影响,因此在实际操作中可能需要进行一些调整,例如调整拼接顺序、调整旋转中心、调整旋转角度等。 总结起来,通过读取和调整多张带角度的图片大小,然后进行角度旋转并拼接,最后保存拼接后的图片,就可以实现Python和OpenCV拼接多张带角度图片的操作。

python opencv 多张图像拼接

可以使用OpenCV中的warpPerspective()方法和findHomography()方法来实现多张图像的拼接。具体步骤如下: 1.读取多张图像并提取它们的特征点。 2.对于每两张图像,使用OpenCV中的findHomography()方法计算它们之间的单应矩阵。 3.使用OpenCV中的warpPerspective()方法将每张图像转换为拼接后的图像中的位置。 4.将所有转换后的图像拼接在一起。 下面是一个示例代码,假设我们有三张图像im1、im2和im3,它们已经被读取并且我们已经计算出了它们之间的单应矩阵h12、h23和h31: ```python import cv2 import numpy as np # 读取图像 im1 = cv2.imread('image1.jpg') im2 = cv2.imread('image2.jpg') im3 = cv2.imread('image3.jpg') # 提取特征点 detector = cv2.xfeatures2d.SIFT_create() matcher = cv2.FlannBasedMatcher({'algorithm': 0, 'trees': 5}, {}) kpts1, desc1 = detector.detectAndCompute(im1, None) kpts2, desc2 = detector.detectAndCompute(im2, None) kpts3, desc3 = detector.detectAndCompute(im3, None) matches12 = matcher.knnMatch(desc1, desc2, 2) matches23 = matcher.knnMatch(desc2, desc3, 2) matches31 = matcher.knnMatch(desc3, desc1, 2) # 计算单应矩阵 pts1 = [] pts2 = [] for m in matches12: if len(m) == 2 and m[0].distance < m[1].distance * 0.7: pts1.append(kpts1[m[0].queryIdx].pt) pts2.append(kpts2[m[0].trainIdx].pt) pts1 = np.array(pts1) pts2 = np.array(pts2) h12, status = cv2.findHomography(pts1, pts2, cv2.RANSAC, 5.0) pts1 = [] pts2 = [] for m in matches23: if len(m) == 2 and m[0].distance < m[1].distance * 0.7: pts1.append(kpts2[m[0].queryIdx].pt) pts2.append(kpts3[m[0].trainIdx].pt) pts1 = np.array(pts1) pts2 = np.array(pts2) h23, status = cv2.findHomography(pts1, pts2, cv2.RANSAC, 5.0) pts1 = [] pts2 = [] for m in matches31: if len(m) == 2 and m[0].distance < m[1].distance * 0.7: pts1.append(kpts3[m[0].queryIdx].pt) pts2.append(kpts1[m[0].trainIdx].pt) pts1 = np.array(pts1) pts2 = np.array(pts2) h31, status = cv2.findHomography(pts1, pts2, cv2.RANSAC, 5.0) # 转换图像 size = (im1.shape[1] + im2.shape[1] + im3.shape[1], im1.shape[0]) im12 = cv2.warpPerspective(im1, h12, size) im23 = cv2.warpPerspective(im2, np.dot(h23, h12), size) im31 = cv2.warpPerspective(im3, np.dot(h31, np.dot(h23, h12)), size) # 拼接图像 result = np.zeros((im1.shape[0], size[0], 3), dtype=np.uint8) result[:, :im1.shape[1], :] = im1 result[:, im1.shape[1]:im1.shape[1] + im2.shape[1], :] = im2 result[:, im1.shape[1] + im2.shape[1]:, :] = im3 mask = np.zeros((im1.shape[0], size[0]), dtype=np.uint8) mask[:, :im1.shape[1]] = 255 mask = cv2.warpPerspective(mask, h12, size) result = cv2.seamlessClone(im12, result, mask, (im1.shape[1], 0), cv2.NORMAL_CLONE) mask = np.zeros((im1.shape[0], size[0]), dtype=np.uint8) mask[:, :im1.shape[1] + im2.shape[1]] = 255 mask = cv2.warpPerspective(mask, np.dot(h23, h12), size) result = cv2.seamlessClone(im23, result, mask, (im1.shape[1] + im2.shape[1], 0), cv2.NORMAL_CLONE) mask = np.zeros((im1.shape[0], size[0]), dtype=np.uint8) mask[:, im1.shape[1]:] = 255 mask = cv2.warpPerspective(mask, np.dot(h31, np.dot(h23, h12)), size) result = cv2.seamlessClone(im31, result, mask, (im1.shape[1] + im2.shape[1], 0), cv2.NORMAL_CLONE) # 显示结果 cv2.imshow('result', result) cv2.waitKey(0) cv2.destroyAllWindows() ```

相关推荐

最新推荐

recommend-type

python opencv 图像拼接的实现方法

高级图像拼接也叫作基于特征匹配的图像拼接,拼接时消去两幅图像相同的部分,实现拼接合成全景图。这篇文章主要介绍了python opencv 图像拼接,需要的朋友可以参考下
recommend-type

Python+OpenCV实现图像的全景拼接

主要为大家详细介绍了Python+OpenCV实现图像的全景拼接,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

python+opencv 读取文件夹下的所有图像并批量保存ROI的方法

今天小编就为大家分享一篇python+opencv 读取文件夹下的所有图像并批量保存ROI的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

图像处理案列三之图像拼接

3.求出样本图像的特征点坐标和测试图像的特征点坐标,找出这两坐标矩阵的H变换公式(利用RANSAC算法),将H变换公式对right图像做透视变换,得到拼接后的右边图像 4.将left原图赋给result对应的ROI区域,大功告成。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

def ObjFun(x,y,beta): # 目标函数 """ Logistic regression loss function :param beta: model parameter vector :param x: feature matrix :param y: label vector :return: loss value """ n = x.shape[0] p = x.shape[1] pred = 1 / (1 + np.exp(-np.dot(x, beta))) pred = np.clip(pred, 1e-15, 1 - 1e-15) # 将预测值限制在一个很小的区间内 ObjVal = -np.sum(y * np.log(pred) + (1 - y) * np.log(1 - pred)) / n return ObjVal

好的,根据上面的目标函数,我们可以推导出其对应的梯度向量函数,如下所示: def gradient(x, y, beta): """ Compute gradient of the logistic regression loss function :param beta: model parameter vector :param x: feature matrix :param y: label vector :return: gradient vector """ n = x.shape[0] pred = 1 /
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依