EM算法matlab代码
时间: 2023-09-16 08:08:43 浏览: 137
以下是EM算法的MATLAB代码示例:
% 数据初始化
data = [1 0 0 1 0 0 1 1 1 0];
% 步骤1:初始化参数
theta_A = 0.6;
theta_B = 0.5;
% 迭代次数
max_iters = 100;
% EM算法
for i = 1:max_iters
% 步骤2:E步骤
% 计算当前参数下每个样本属于A或B的概率
% 这里使用伯努利分布作为样本分布
p_A = bernoulli(theta_A, data);
p_B = bernoulli(theta_B, data);
% 步骤3:M步骤
% 更新参数
theta_A = sum(p_A)/length(data);
theta_B = sum(p_B)/length(data);
% 检查是否收敛
if i > 1 && abs(theta_A - prev_theta_A) < 1e-6 && abs(theta_B - prev_theta_B) < 1e-6
break;
end
% 保存上一个迭代的参数
prev_theta_A = theta_A;
prev_theta_B = theta_B;
end
% 输出结果
fprintf('theta_A = %f\n', theta_A);
fprintf('theta_B = %f\n', theta_B);
function p = bernoulli(theta, data)
% 计算伯努利分布概率密度函数
p = theta.^data .* (1-theta).^(1-data);
end
阅读全文
相关推荐


















