乌鸦搜索算法python代码
时间: 2023-10-13 19:20:46 浏览: 189
以下是一个简单的乌鸦搜索算法的Python代码实现:
```python
import math
def crow_search(fitness_func, lower_bound, upper_bound, num_iterations, num_crows, alpha, beta, delta):
# 初始化乌鸦们
crows = []
for i in range(num_crows):
crow = {
"position": [0.0] * len(lower_bound),
"fitness": math.inf
}
for j in range(len(lower_bound)):
crow["position"][j] = lower_bound[j] + (upper_bound[j] - lower_bound[j]) * random.random()
crow["fitness"] = fitness_func(crow["position"])
crows.append(crow)
# 迭代寻找最优解
for t in range(num_iterations):
# 计算每个乌鸦的适应度值
for i in range(num_crows):
crows[i]["fitness"] = fitness_func(crows[i]["position"])
# 对乌鸦按适应度值排序
crows.sort(key=lambda x: x["fitness"])
# 更新最优解
best_crow = crows[0]
# 移动乌鸦
for i in range(num_crows):
for j in range(len(lower_bound)):
# 计算乌鸦的新位置
r1 = random.random()
r2 = random.random()
r3 = random.random()
crows[i]["position"][j] = best_crow["position"][j] + alpha * (math.exp(-beta * r1) - math.exp(-beta)) * (best_crow["position"][j] - delta * crows[i]["position"][j]) + alpha * (math.exp(-beta * r2) - math.exp(-beta)) * (crows[i]["position"][j] - delta * crows[i]["position"][j]) + alpha * (math.exp(-beta * r3) - math.exp(-beta)) * (upper_bound[j] - lower_bound[j]) * random.random()
# 确保新位置在可行域内
crows[i]["position"][j] = max(lower_bound[j], min(upper_bound[j], crows[i]["position"][j]))
# 更新适应度值
crows[i]["fitness"] = fitness_func(crows[i]["position"])
# 返回最优解
crows.sort(key=lambda x: x["fitness"])
return crows[0]["position"]
```
其中,`fitness_func` 是一个用于计算适应度值的函数,`lower_bound` 和 `upper_bound` 分别是每个变量的下界和上界,`num_iterations` 是迭代次数,`num_crows` 是乌鸦数量,`alpha`、`beta` 和 `delta` 是算法的超参数。
阅读全文