ef set_tf_device(device): if device == 'cpu': print("Training on CPU...") os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
时间: 2024-04-26 09:24:41 浏览: 128
这段代码的主要作用是设置 TensorFlow 训练的设备,可以选择在 CPU 上训练或者在 GPU 上训练。
如果选择在 CPU 上训练,会将 CUDA_VISIBLE_DEVICES 环境变量设置为 -1,这样 TensorFlow 就不会使用 GPU。如果选择在 GPU 上训练,会遍历可用的 GPU,并设置 GPU 的内存增长机制来优化 GPU 的使用。
相关问题
try: import thop except ImportError: thop = None logger = logging.getLogger(__name__) @contextmanager def torch_distributed_zero_first(local_rank: int): if local_rank not in [-1, 0]: torch.distributed.barrier() yield if local_rank == 0: torch.distributed.barrier() def init_torch_seeds(seed=0): torch.manual_seed(seed) if seed == 0: cudnn.benchmark, cudnn.deterministic = False, True else: cudnn.benchmark, cudnn.deterministic = True, False def select_device(device='', batch_size=None): s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' cpu = device.lower() == 'cpu' if cpu: os.environ['CUDA_VISIBLE_DEVICES'] = '-1' elif device: # non-cpu device requested os.environ['CUDA_VISIBLE_DEVICES'] = device assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' cuda = not cpu and torch.cuda.is_available() if cuda: n = torch.cuda.device_count() if n > 1 and batch_size: # check that batch_size is compatible with device_count assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' space = ' ' * len(s) for i, d in enumerate(device.split(',') if device else range(n)): p = torch.cuda.get_device_properties(i) s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" s += 'CPU\n' logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe return torch.device('cuda:0' if cuda else 'cpu') def time_synchronized(): if torch.cuda.is_available(): torch.cuda.synchronize() return time.time()
这段代码是一个Python脚本,包含了一些用于PyTorch训练的实用函数。具体来说,它包含了以下函数:
- import thop:导入PyTorch的模块thop,用于计算模型的FLOPs和参数数量。
- torch_distributed_zero_first:用于在分布式训练中同步所有进程的执行顺序。
- init_torch_seeds:用于初始化PyTorch的随机数种子。
- select_device:用于选择PyTorch的设备,可以选择CPU或GPU。
- time_synchronized:用于在CPU和GPU之间同步时间。
这些函数都是用于方便PyTorch训练的实用函数,可以大大简化代码编写。
ngpus_per_node = torch.cuda.device_count() if distributed: dist.init_process_group(backend="nccl") local_rank = int(os.environ["LOCAL_RANK"]) rank = int(os.environ["RANK"]) device = torch.device("cuda", local_rank) if local_rank == 0: print(f"[{os.getpid()}] (rank = {rank}, local_rank = {local_rank}) training...") print("Gpu Device Count : ", ngpus_per_node) else: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') local_rank = 0
这段代码是用来初始化分布式训练环境的。首先会检查当前机器上可用的 GPU 数量,并根据是否进行分布式训练来选择初始化分布式训练环境还是普通的训练环境。如果是分布式训练环境,就会调用 `dist.init_process_group` 方法初始化进程组,然后根据环境变量 `LOCAL_RANK` 和 `RANK` 来分配当前进程的本地 GPU 和进程编号。最后会打印出 GPU 数量和当前进程的信息。如果不是分布式训练环境,则只会选择一个可用的 GPU。
阅读全文