svm算法 PYTHon 代码
时间: 2023-12-01 22:39:07 浏览: 83
可以使用Python中的sklearn包来实现SVM算法。下面是一个简单的示例代码:
```
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import svm
# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# 创建SVM分类器
clf = svm.SVC(kernel='linear', C=1, gamma='auto')
# 训练模型
clf.fit(X_train, y_train)
# 预测测试集
y_pred = clf.predict(X_test)
# 输出准确率
print("Accuracy:", clf.score(X_test, y_test))
```
这段代码使用了鸢尾花数据集作为示例数据集,使用SVM分类器进行分类,并输出了模型的准确率。你可以根据自己的需求修改数据集和参数来实现自己的SVM算法。
相关问题
svm算法python代码
可以直接回答这个问题,以下是一个简单的 SVM 算法 Python 代码:
```
from sklearn import datasets
from sklearn import svm
# 导入iris数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 定义SVM模型
clf = svm.SVC(kernel='linear', C=1)
# 使用iris数据集进行训练
clf.fit(X, y)
# 预测一组数据
print(clf.predict([[5.1, 3.5, 1.4, 0.2]]))
```
svm算法 python 代码
可以使用Python中的sklearn包来实现SVM算法。下面是一个简单的示例代码:
```
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import svm
# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# 创建SVM分类器
clf = svm.SVC(kernel='linear', C=1, gamma='auto')
# 训练模型
clf.fit(X_train, y_train)
# 预测测试集
y_pred = clf.predict(X_test)
# 输出准确率
print("Accuracy:", clf.score(X_test, y_test))
```
这段代码使用了鸢尾花数据集作为示例数据集,使用SVM分类器进行分类,并输出了模型的准确率。你可以根据自己的需求修改数据集和参数来实现自己的SVM算法。
阅读全文