X_trn, X_tst, y_trn, y_tst = train_test_split(X, y, test_size=0.15, random_state=42, stratify=y)

时间: 2023-12-24 20:07:25 浏览: 22
这段代码使用了 scikit-learn 库中的 `train_test_split` 函数,将数据集 `X` 和标签集 `y` 划分为训练集和测试集,其中测试集占总数据集的 15%。`random_state` 参数用于设置随机数种子,保证每次运行程序时的划分结果相同。`stratify` 参数用于按照标签的比例来划分数据集,保证训练集和测试集中的类别比例相同。函数的返回值是划分后的训练集、测试集和对应的标签集。
相关问题

# Separate the training data into training and validation set X_trn, X_tst, y_trn, y_tst = train_test_split(X, y, test_size=0.15, random_state=42, stratify=y)

这段代码是用于将数据集分成训练集和验证集。首先,通过train_test_split函数将X和y分别划分成训练集和测试集,其中test_size=0.15表示将15%的数据划分为测试集,random_state=42表示设置随机数种子以保证结果的可重复性,stratify=y表示按照y中的类别比例进行分层抽样。最终,将划分得到的X_trn、X_tst、y_trn、y_tst分别赋值给对应的变量。在机器学习中,将数据集分成训练集和验证集的目的是为了模型选择和调优。训练集用于训练模型,验证集用于评估模型的性能和选择最优的超参数,测试集用于最终评估模型的泛化性能。

idx = 0 for X_trn_data, y_trn_data, X_tst_data, y_tst_data in zip(all_X_trn, all_y_trn, all_X_tst, all_y_tst): print('') print('Feature version ' + str(idx)) idx = idx + 1 for model, model_name, parameter in zip(models, model_names, parameters):

这段代码是一个for循环,循环中的第一行定义了一个变量idx并将其初始化为0。接下来通过zip函数将多个列表进行打包,依次取出all_X_trn、all_y_trn、all_X_tst、all_y_tst中的元素,分别赋值给X_trn_data、y_trn_data、X_tst_data、y_tst_data。在每次循环开始时,会先打印两个空行和一个字符串 'Feature version ' + str(idx),其中str(idx)是将idx转换成字符串类型。然后idx加1。接着使用zip函数将多个列表进行打包,依次取出models、model_names、parameters中的元素,分别赋值给model、model_name、parameter。这里的models、model_names、parameters分别是包含多个模型、模型名称、模型超参数的列表。在循环体中,可以根据model、model_name、parameter来训练模型、进行预测等操作。

相关推荐

x_train = train.drop(['id','label'], axis=1) y_train = train['label'] x_test=test.drop(['id'], axis=1) def abs_sum(y_pre,y_tru): y_pre=np.array(y_pre) y_tru=np.array(y_tru) loss=sum(sum(abs(y_pre-y_tru))) return loss def cv_model(clf, train_x, train_y, test_x, clf_name): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) test = np.zeros((test_x.shape[0],4)) cv_scores = [] onehot_encoder = OneHotEncoder(sparse=False) for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************************************ {} ************************************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] if clf_name == "lgb": train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 4, 'num_leaves': 2 ** 5, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 4, 'learning_rate': 0.1, 'seed': seed, 'nthread': 28, 'n_jobs':24, 'verbose': -1, } model = clf.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=2000, verbose_eval=100, early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) val_y=np.array(val_y).reshape(-1, 1) val_y = onehot_encoder.fit_transform(val_y) print('预测的概率矩阵为:') print(test_pred) test += test_pred score=abs_sum(val_y, val_pred) cv_scores.append(score) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) test=test/kf.n_splits return test def lgb_model(x_train, y_train, x_test): lgb_test = cv_model(lgb, x_train, y_train, x_test, "lgb") return lgb_test lgb_test = lgb_model(x_train, y_train, x_test) 这段代码运用了什么学习模型

def cv_model(clf, train_x, train_y, test_x, clf_name='lgb'): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) train = np.zeros(train_x.shape[0]) test = np.zeros(test_x.shape[0]) cv_scores = [] for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************ {} *************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'min_child_weight': 5, 'num_leaves': 2**6, 'lambda_l2': 10, 'feature_fraction': 0.9, 'bagging_fraction': 0.9, 'bagging_freq': 4, 'learning_rate': 0.01, 'seed': 2021, 'nthread': 28, 'n_jobs':-1, 'silent': True, 'verbose': -1, } model = clf.train(params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix], #categorical_feature = categorical_feature, verbose_eval=500,early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) train[valid_index] = val_pred test += test_pred / kf.n_splits cv_scores.append(roc_auc_score(val_y, val_pred)) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) return train, test lgb_train, lgb_test = cv_model(lgb, x_train, y_train, x_test)这段代码什么意思,分类标签为0和1,属于二分类,预测结果点击率的数值是怎么来的

解释以下代码:def cv_model(clf, train_x, train_y, test_x, clf_name): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) test = np.zeros((test_x.shape[0],4)) cv_scores = [] onehot_encoder = OneHotEncoder(sparse=False) for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************************************ {} ************************************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] if clf_name == "lgb": train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 4, 'num_leaves': 2 ** 5, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 4, 'learning_rate': 0.1, 'seed': seed, 'nthread': 28, 'n_jobs':24, 'verbose': -1, } model = clf.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=2000, verbose_eval=100, early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) val_y=np.array(val_y).reshape(-1, 1) val_y = onehot_encoder.fit_transform(val_y) print('预测的概率矩阵为:') print(test_pred) test += test_pred score=abs_sum(val_y, val_pred) cv_scores.append(score) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) test=test/kf.n_splits return test

param = {'num_leaves': 31, 'min_data_in_leaf': 20, 'objective': 'binary', 'learning_rate': 0.06, "boosting": "gbdt", "metric": 'None', "verbosity": -1} trn_data = lgb.Dataset(trn, trn_label) val_data = lgb.Dataset(val, val_label) num_round = 666 # clf = lgb.train(param, trn_data, num_round, valid_sets=[trn_data, val_data], verbose_eval=100, # early_stopping_rounds=300, feval=win_score_eval) clf = lgb.train(param, trn_data, num_round) # oof_lgb = clf.predict(val, num_iteration=clf.best_iteration) test_lgb = clf.predict(test, num_iteration=clf.best_iteration)thresh_hold = 0.5 oof_test_final = test_lgb >= thresh_hold print(metrics.accuracy_score(test_label, oof_test_final)) print(metrics.confusion_matrix(test_label, oof_test_final)) tp = np.sum(((oof_test_final == 1) & (test_label == 1))) pp = np.sum(oof_test_final == 1) print('accuracy1:%.3f'% (tp/(pp)))test_postive_idx = np.argwhere(oof_test_final == True).reshape(-1) # test_postive_idx = list(range(len(oof_test_final))) test_all_idx = np.argwhere(np.array(test_data_idx)).reshape(-1) stock_info['trade_date_id'] = stock_info['trade_date'].map(date_map) stock_info['trade_date_id'] = stock_info['trade_date_id'] + 1tmp_col = ['ts_code', 'trade_date', 'trade_date_id', 'open', 'high', 'low', 'close', 'ma5', 'ma13', 'ma21', 'label_final', 'name'] stock_info.iloc[test_all_idx[test_postive_idx]] tmp_df = stock_info[tmp_col].iloc[test_all_idx[test_postive_idx]].reset_index() tmp_df['label_prob'] = test_lgb[test_postive_idx] tmp_df['is_limit_up'] = tmp_df['close'] == tmp_df['high'] buy_df = tmp_df[(tmp_df['is_limit_up']==False)].reset_index() buy_df.drop(['index', 'level_0'], axis=1, inplace=True)buy_df['buy_flag'] = 1 stock_info_copy['sell_flag'] = 0tmp_idx = (index_df['trade_date'] == test_date_min+1) close1 = index_df[tmp_idx]['close'].values[0] test_date_max = 20220829 tmp_idx = (index_df['trade_date'] == test_date_max) close2 = index_df[tmp_idx]['close'].values[0]tmp_idx = (stock_info_copy['trade_date'] >= test_date_min) & (stock_info_copy['trade_date'] <= test_date_max) tmp_df = stock_info_copy[tmp_idx].reset_index(drop=True)from imp import reload import Account reload(Account) money_init = 200000 account = Account.Account(money_init, max_hold_period=20, stop_loss_rate=-0.07, stop_profit_rate=0.12) account.BackTest(buy_df, tmp_df, index_df, buy_price='open')tmp_df2 = buy_df[['ts_code', 'trade_date', 'label_prob', 'label_final']] tmp_df2 = tmp_df2.rename(columns={'trade_date':'buy_date'}) tmp_df = account.info tmp_df['buy_date'] = tmp_df['buy_date'].apply(lambda x: int(x)) tmp_df = tmp_df.merge(tmp_df2, on=['ts_code', 'buy_date'], how='left')最终的tmp_df是什么?tmp_df[tmp_df['label_final']==1]又选取了什么股票?

def compute_mAP(trn_binary, tst_binary, trn_label, tst_label): """ compute mAP by searching testset from trainset https://github.com/flyingpot/pytorch_deephash """ for x in trn_binary, tst_binary, trn_label, tst_label: x.long() AP = [] Ns = torch.arange(1, trn_binary.size(0) + 1) Ntest = torch.arange(1, tst_binary.size(0) + 1) print("trn_binary.size(0):",trn_binary.size(0)) print("tst_binary.size(0):", tst_binary.size(0)) print("Ns:",Ns) print("Ns:", Ntest) # print("Ns(train):",Ns) for i in range(tst_binary.size(0)): query_label, query_binary = tst_label[i], tst_binary[i] # 把测试图像编码和标签赋值给->查询图像编码和标签 _, query_result = torch.sum((query_binary != trn_binary).long(), dim=1).sort() # 判断查询图像编码是否等于训练图像编码,相等的总和,并排序。 print("查询标签-----------------------------------------------------:",query_label) print("查询二进制:", query_binary) print(len(query_binary)) print("查询结果:",query_result) print("是否相等:",query_binary != trn_binary) print("查询结果1:", torch.sum((query_binary != trn_binary).long(), dim=1)) print("查询结果2:",torch.sum((query_binary != trn_binary).long(), dim=1).sort()) correct = (query_label == trn_label[query_result]).float() # 正确匹配的二进制编码个数 print("trn_label[query_result]:",trn_label[query_result]) num_ones = torch.sum(correct == 1) print("查询正确的个数:",num_ones) print("查询正确:",correct) P = torch.cumsum(correct, dim=0) / Ns print("torch.cumsum(correct, dim=0)",torch.cumsum(correct, dim=0)) print("查询正确/Ns",torch.Tensor(P)) #每个位置的精度 P AP.append(torch.sum(P * correct) / torch.sum(correct)) # print("---:",AP) acc = num_ones / tst_binary.size(0) print("ACC================================== ", acc) mAP = torch.mean(torch.Tensor(AP)) return mAP 请问怎么将这段代码改成EER评估指标的代码

最新推荐

recommend-type

三菱SWOD5C-FXTRN-BEG-C用户手册.doc

三菱SWOD5C-FXTRN-BEG-C用户手册doc,三菱SWOD5C-FXTRN-BEG-C用户手册
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

未定义标识符CFileFind

CFileFind 是MFC(Microsoft Foundation Class)中的一个类,用于在Windows文件系统中搜索文件和目录。如果你在使用CFileFind时出现了“未定义标识符”的错误,可能是因为你没有包含MFC头文件或者没有链接MFC库。你可以检查一下你的代码中是否包含了以下头文件: ```cpp #include <afx.h> ``` 另外,如果你在使用Visual Studio开发,还需要在项目属性中将“使用MFC”设置为“使用MFC的共享DLL”。这样才能正确链接MFC库。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。