No module named 'keras.applications.resnet50'
时间: 2023-07-03 08:31:52 浏览: 346
抱歉,是我之前的回答有误,正确的加载 ResNet50 模型的方法是使用 `tensorflow.keras.applications.resnet50`。以下是修改后的代码示例:
```python
import os
import numpy as np
from PIL import Image
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
from sklearn.cluster import KMeans
# 加载 ResNet50 模型
model = ResNet50(weights='imagenet', include_top=False)
# 加载并预处理图片,提取特征向量
features = []
for filename in os.listdir('D:/wjd/2'):
if filename.endswith('.png'):
img = Image.open(os.path.join('D:/wjd/2', filename))
img = img.resize((224, 224))
x = np.array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
feature = model.predict(x)
feature = np.squeeze(feature)
features.append(feature)
# 将特征向量进行聚类,自动确定聚类的数量
kmeans = KMeans(n_clusters=None, max_iter=1000, n_init=50).fit(features)
n_clusters = len(set(kmeans.labels_))
# 将每张图片分配到对应的聚类中
for i, label in enumerate(kmeans.labels_):
filename = os.listdir('D:/wjd/2')[i]
print('{} belongs to cluster {}'.format(filename, label))
```
请注意,加载 ResNet50 模型的代码已经修改为 `from tensorflow.keras.applications.resnet50 import ResNet50`。如果仍然存在问题,请确认你已正确安装 TensorFlow 和 Keras 库。
阅读全文