tr_mb2 = img_orig(iC-10:iC-3,jC-5:jC+2);解释这行代码

时间: 2024-03-29 17:40:53 浏览: 15
这行代码是从名为img_orig的矩阵中,选取一个子矩阵tr_mb2。这个子矩阵的大小是8x7,它是从img_orig中以(iC-10, jC-5)为左上角顶点,以(iC-3, jC+2)为右下角顶点所划定的矩形区域。其中iC和jC是变量,表示矩阵中的行和列索引。因此,这行代码的作用是从img_orig中选取一个8x7的子矩阵,该子矩阵的左上角顶点位于(iC-10, jC-5),右下角顶点位于(iC-3, jC+2)。
相关问题

Imf = insertShape(img_orig, 'Rectangle', [jC-14,iC-14,20,20], 'Color', 'red');解释这行代码

这行代码是在名为img_orig的图像上绘制了一个矩形,并将结果保存在变量Imf中。具体来说,它使用了MATLAB的insertShape函数,该函数的第一个参数是要绘制形状的图像,第二个参数是指定要绘制的形状类型,这里是'Rectangle',表示绘制一个矩形。第三个参数是一个表示矩形的四个值的向量,分别是矩形左上角的x坐标、y坐标,矩形的宽度和高度。这里的向量是[jC-14,iC-14,20,20],表示矩形左上角的坐标为(jC-14, iC-14),宽度为20,高度为20。第四个参数是指定形状的颜色,这里是'red',表示红色。因此,这行代码的作用是在img_orig图像上绘制一个左上角顶点坐标为(jC-14, iC-14),宽20,高20的红色矩形,并将结果保存在Imf变量中。

def preprocess_img(img_rgb_orig, HW=(256,256), resample=3): # return original size L and resized L as torch Tensors img_rgb_rs = resize_img(img_rgb_orig, HW=HW, resample=resample) img_lab_orig = color.rgb2lab(img_rgb_orig) img_lab_rs = color.rgb2lab(img_rgb_rs) img_l_orig = img_lab_orig[:,:,0] img_l_rs = img_lab_rs[:,:,0] tens_orig_l = torch.Tensor(img_l_orig)[None,None,:,:] tens_rs_l = torch.Tensor(img_l_rs)[None,None,:,:] return (tens_orig_l, tens_rs_l)

这段代码实现了一个图像的预处理过程,包括将原始的 RGB 图像转换为 Lab 颜色空间的图像、将 Lab 图像中的亮度通道提取出来作为单独的 L 通道图像、对 L 通道图像进行大小调整(resize)以适应模型需要的输入大小(HW),最后将调整后的 L 通道图像转换为 PyTorch 的 Tensor 格式并返回。 具体来说,输入参数包括:原始的 RGB 图像(img_rgb_orig)、调整后的 L 通道图像大小(HW)和调整方法(resample)。其中,调整方法 resample 默认为 3,表示使用 Lanczos 滤波器进行调整。该函数的输出为:原始大小的 L 通道图像的 Tensor 格式(tens_orig_l)和调整后的 L 通道图像的 Tensor 格式(tens_rs_l)。 需要注意的是,这段代码仅实现了图像预处理的一部分,具体的使用场景需要根据实际情况进行调整。

相关推荐

CMake Warning: Ignoring extra path from command line: "../openMVS" -- Detected version of GNU GCC: 94 (904) Compiling with C++17 CMake Error at /home/xujx/.local/lib/python3.8/site-packages/cmake/data/share/cmake-3.26/Modules/CMakeDetermineCompilerId.cmake:751 (message): Compiling the CUDA compiler identification source file "CMakeCUDACompilerId.cu" failed. Compiler: /usr/bin/nvcc Build flags: Id flags: --keep;--keep-dir;tmp -v The output was: 255 #$ _SPACE_= #$ _CUDART_=cudart #$ _HERE_=/usr/lib/nvidia-cuda-toolkit/bin #$ _THERE_=/usr/lib/nvidia-cuda-toolkit/bin #$ _TARGET_SIZE_= #$ _TARGET_DIR_= #$ _TARGET_SIZE_=64 #$ NVVMIR_LIBRARY_DIR=/usr/lib/nvidia-cuda-toolkit/libdevice #$ PATH=/usr/lib/nvidia-cuda-toolkit/bin:/usr/local/cuda-11.8/bin:/home/xujx/anaconda3/bin:/home/xujx/anaconda3/condabin:/home/xujx/.local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin #$ LIBRARIES= -L/usr/lib/x86_64-linux-gnu/stubs -L/usr/lib/x86_64-linux-gnu #$ rm tmp/a_dlink.reg.c #$ gcc -D__CUDA_ARCH__=300 -E -x c++ -DCUDA_DOUBLE_MATH_FUNCTIONS -D__CUDACC__ -D__NVCC__ -D__CUDACC_VER_MAJOR__=10 -D__CUDACC_VER_MINOR__=1 -D__CUDACC_VER_BUILD__=243 -include "cuda_runtime.h" -m64 "CMakeCUDACompilerId.cu" > "tmp/CMakeCUDACompilerId.cpp1.ii" #$ cicc --c++14 --gnu_version=90400 --allow_managed -arch compute_30 -m64 -ftz=0 -prec_div=1 -prec_sqrt=1 -fmad=1 --include_file_name "CMakeCUDACompilerId.fatbin.c" -tused -nvvmir-library "/usr/lib/nvidia-cuda-toolkit/libdevice/libdevice.10.bc" --gen_module_id_file --module_id_file_name "tmp/CMakeCUDACompilerId.module_id" --orig_src_file_name "CMakeCUDACompilerId.cu" --gen_c_file_name "tmp/CMakeCUDACompilerId.cudafe1.c" --stub_file_name "tmp/CMakeCUDACompilerId.cudafe1.stub.c" --gen_device_file_name "tmp/CMakeCUDACompilerId.cudafe1.gpu" "tmp/CMakeCUDACompilerId.cpp1.ii" -o "tmp/CMakeCUDACompilerId.ptx" #$ ptxas -arch=sm_30 -m64 "tmp/CMakeCUDACompilerId.ptx" -o "tmp/CMakeCUDACompilerId.sm_30.cubin" ptxas fatal : Value 'sm_30' is not defined for option 'gpu-name' # --error 0xff -- Call Stack (most recent call first): /home/xujx/.local/lib/python3.8/site-packages/cmake/data/share/cmake-3.26/Modules/CMakeDetermineCompilerId.cmake:8 (CMAKE_DETERMINE_COMPILER_ID_BUILD) /home/xujx/.local/lib/python3.8/site-packages/cmake/data/share/cmake-3.26/Modules/CMakeDetermineCompilerId.cmake:53 (__determine_compiler_id_test) /home/xujx/.local/lib/python3.8/site-packages/cmake/data/share/cmake-3.26/Modules/CMakeDetermineCUDACompiler.cmake:307 (CMAKE_DETERMINE_COMPILER_ID) CMakeLists.txt:109 (ENABLE_LANGUAGE)是什么问题

解释分析细致讲解一下这段代码int edit_config_internal(xmlDocPtr repo, xmlDocPtr edit, struct ncds_ds* ds, NC_EDIT_DEFOP_TYPE defop) { xmlXPathObjectPtr nodes; int i; char *msg = NULL; xmlNodePtr orig_node, edit_node, parent_node,model_node = NULL; keyList keys; xmlDocPtr model = ds->ext_model; DBG("%s BEGIN\n", __FILE__); keys = get_keynode_list(model); nodes = get_operation_elements(NC_EDIT_OP_REMOVE, edit); if (nodes != NULL) { if (!xmlXPathNodeSetIsEmpty(nodes->nodesetval)) { VERB("DELETE !xmlXPathNodeSetIsEmpty\n "); for (i = 0; i < nodes->nodesetval->nodeNr; i++) { edit_node = nodes->nodesetval->nodeTab[i]; model_node = find_element_model(edit_node, model); if (is_mandatory(model_node)) { ERROR("NC_ERR_DEL_MANDATORY_NOT_SUPPORT(%s:%d)\n",__FILE__, __LINE__); } orig_node = find_element_equiv(repo, edit_node, model, keys); for (; orig_node != NULL; orig_node = find_element_equiv(repo, edit_node, model, keys)) { parent_node = orig_node->parent; xmlUnlinkNode(orig_node); orig_node->parent = parent_node; edit_delete(orig_node); } edit_delete(edit_node); } } else { DBG("Delete xmlXPathNodeSetIsEmpty\n"); } xmlXPathFreeObject(nodes); } nodes = get_operation_elements(NC_EDIT_OP_REPLACE, edit); if (nodes != NULL) { if (!xmlXPathNodeSetIsEmpty(nodes->nodesetval)) { DBG("%s/%d something to replace nodeNr %d",__func__,__LINE__,nodes->nodesetval->nodeNr); for (i = 0; i < nodes->nodesetval->nodeNr; i++) { if (edit_replace_intrenal(repo, nodes->nodesetval->nodeTab[i], model, keys) != EXIT_SUCCESS) { xmlXPathFreeObject(nodes); goto error; } } } else { DBG("Replace xmlXPathNodeSetIsEmpty\n"); } xmlXPathFreeObject(nodes); } if (defop == NC_EDIT_DEFOP_MERGE) { if (edit->children != NULL) { if (edit_merge_intrenal(repo, edit->children, model, keys) != EXIT_SUCCESS) { goto error; } } } keyListFree(keys); return EXIT_SUCCESS; error: if (keys != NULL ) { keyListFree(keys); } return EXIT_FAILURE; }

最新推荐

recommend-type

###对华为OD分布式操作系统的详细介绍

华为OD
recommend-type

2110220116吴骏博.py

2110220116吴骏博.py
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步