bp神经网络模型的结构是什么
时间: 2024-01-11 10:09:33 浏览: 146
BP神经网络,bp神经网络预测模型,Python
5星 · 资源好评率100%
BP神经网络模型是一种前向反馈式的人工神经网络,它由输入层、隐藏层(可以有多个)和输出层组成。每一层都由若干个神经元组成,相邻两层之间神经元之间有权重连接。
在BP神经网络中,输入信号通过输入层传递给隐藏层,再经过隐藏层的处理后,最终输出到输出层。在每次训练时,通过输入数据和期望输出数据计算出网络输出值和误差,然后通过误差反向传播算法调整每个神经元之间的权重,使得输出误差最小化。
BP神经网络的优点在于可以通过多层隐藏层来提高网络的表达能力,可以用于解决非线性问题。其缺点在于容易陷入局部最优解,且训练时间较长。
阅读全文