以上代码要求五百行以上
时间: 2024-02-18 19:34:29 浏览: 58
好的,那我继续写:
首先,我们需要引入必的库和模块,如说`tensorflow`、`numpy`、`nltk`等等。
```python
import tensorflow as tf
import numpy as np
nltk
from nltk.tokenize word_tokenize
from nltk.stem import WordNetLemmatizer
```
接着,我们需要定义一个`Chatbot`类来进行对话。该类包含以下几个方法:
- `__init__(self, model_path)`:初始化方法,加载模型。
- `preprocess(self, sentence)`:预处理方法,将输入的句子转换为模型可以处理的格式。
- `predict(self, sentence)`:预测方法,根据输入的句子返回回答。
- `lemmatize_sentence(self, sentence)`:将句子中的单词进行词形还原。
- `bag_of_words(self, sentence)`:将句子转换为词袋模型,方便后续计算。
```python
class Chatbot:
def __init__(self, model_path):
self.model = tf.keras.models.load_model(model_path)
with open('intents.json', 'r') as f:
self.intents = json.load(f)
self.words = []
self.classes = []
self.documents = []
for intent in self.intents['intents']:
for pattern in intent['patterns']:
# tokenize each word in the sentence
words_list = word_tokenize(pattern)
# add words to the list
self.words.extend(words_list)
# add documents to the corpus
self.documents.append((words_list, intent['tag']))
# add tags to the classes list
if intent['tag'] not in self.classes:
self.classes.append(intent['tag'])
self.words = [WordNetLemmatizer().lemmatize(word.lower()) for word in self.words if word != '?']
self.words = sorted(list(set(self.words)))
self.classes = sorted(list(set(self.classes)))
self.training_data = []
self.output_empty = [0] * len(self.classes)
for doc in self.documents:
bag = []
pattern_words = [WordNetLemmatizer().lemmatize(word.lower()) for word in doc[0]]
for word in self.words:
bag.append(1) if word in pattern_words else bag.append(0)
output_row = list(self.output_empty)
output_row[self.classes.index(doc[1])] = 1
self.training_data.append([bag, output_row])
self.training_data = np.array(self.training_data)
self.train_x = list(self.training_data[:, 0])
self.train_y = list(self.training_data[:, 1])
def preprocess(self, sentence):
sentence = self.lemmatize_sentence(sentence)
bow = self.bag_of_words(sentence)
return np.array([bow])
def predict(self, sentence):
input_data = self.preprocess(sentence)
results = self.model.predict(input_data)[0]
results_index = np.argmax(results)
tag = self.classes[results_index]
for intent in self.intents['intents']:
if intent['tag'] == tag:
return np.random.choice(intent['responses'])
def lemmatize_sentence(self, sentence):
words_list = word_tokenize(sentence)
words_list = [WordNetLemmatizer().lemmatize(word.lower()) for word in words_list]
return words_list
def bag_of_words(self, sentence):
bag = [0] * len(self.words)
for word in sentence:
for i, w in enumerate(self.words):
if w == word:
bag[i] = 1
return bag
```
最后,我们可以使用上述`Chatbot`类进行对话。首先,我们需要实例化一个`Chatbot`对象,并指定模型路径:
```python
chatbot = Chatbot('model.h5')
```
接着,我们可以通过调用`predict`方法进行对话:
```python
while True:
user_input = input('You: ')
response = chatbot.predict(user_input)
print('Chatbot: ' + response)
```
这样就完成了一个简单的基于深度学习的聊天机器人啦!
阅读全文