给我看看Python加密解密模块之python-gnupg

时间: 2023-07-06 20:34:51 浏览: 54
好的,以下是一个简单的使用 python-gnupg 模块进行加密和解密的示例代码: ```python import gnupg # 创建一个 GPG 对象 gpg = gnupg.GPG() # 导入公钥 with open('public_key.asc', 'rb') as f: public_key = f.read() import_result = gpg.import_keys(public_key) print(import_result.results) # 加密数据 data = b'Hello, world!' encrypted_data = gpg.encrypt(data, import_result.fingerprints[0], always_trust=True) print(encrypted_data.data) # 解密数据 decrypted_data = gpg.decrypt(encrypted_data.data, passphrase='your_passphrase') print(decrypted_data.data) ``` 在上面的示例代码中,我们首先通过 `gnupg.GPG()` 创建了一个 GPG 对象。然后,我们通过读取公钥文件的方式导入了公钥,并使用 `gpg.import_keys()` 方法将公钥导入到 GPG 对象中。接着,我们使用 `gpg.encrypt()` 方法对数据进行加密,并将加密结果打印出来。最后,我们使用 `gpg.decrypt()` 方法对加密数据进行解密,并将解密结果打印出来。 需要注意的是,上述示例中的 `public_key.asc` 文件是一个 ASCII 编码的公钥文件,可以通过 `gpg --export --armor <key-id>` 命令导出。`--armor` 选项表示将输出结果转换为 ASCII 编码的文本格式。`<key-id>` 是要导出公钥的密钥 ID。 另外,需要在使用 `gpg.encrypt()` 方法时指定接收者的指纹(即密钥 ID),这里我们使用导入公钥时获取的第一个指纹。在使用 `gpg.decrypt()` 方法时,需要提供解密密码(即私钥密码)。

相关推荐

最新推荐

ReactJS视频教程全套百度网盘

ReactJS视频教程全套,总共12章节详细讲述了ReactJS框架的原理及应用,实战篇章中讲述了ReactJS在项目中的的注意事项 学习ReactJS需要对NodeJS框架有基础性了解,还没有学习NodeJS建议先了解一下方后对ReactJS的学习。

用于验证核心构建基块身份验证令牌的Golang身份验证库.zip

用于验证核心构建基块身份验证令牌的Golang身份验证库.zip

MIL_STD_1364J.537.pdf

MIL_STD_1364J.537.pdf

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

hbase中时间戳的精确度和hbase中列族和列名的分隔符是什么

我已经回答了关于HBase中时间戳的精确度的问题,现在回答你的第二个问题: 在HBase中,列族和列名的分隔符是冒号(:)。例如,如果你有一个列族为“info”,列名为“name”的列,那么在HBase中的完整列名将是“info:name”。这个分隔符是在HBase的设计中被硬编码的,不能更改。这个分隔符在HBase的API中也得到了体现,例如在Java API中,可以使用“:`”来将列族和列名分隔开来,如下所示: ```java Get get = new Get(Bytes.toBytes("rowkey")); get.addColumn(Bytes.toBytes("info"),

spring boot应用启动原理分析.docx

spring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

粒子群多目标算法matlab代码【算法实现步骤】计算适应度函数

# 1. 粒子群多目标算法简介 ## 1.1 粒子群多目标算法概述 在多目标优化问题中,粒子群多目标算法是一种常用的元启发式优化算法。它借鉴了鸟群觅食的行为,通过不断调整粒子的位置和速度来搜索最优解空间。相比于传统的单目标优化算法,粒子群多目标算法能够有效解决多目标优化问题。 ## 1.2 算法原理与特点 粒子群多目标算法的核心原理是通过模拟群体中粒子的运动,不断更新粒子的位置和速度,以达到最优解。其特点包括易于实现、收敛速度快、对参数不敏感等。 ## 1.3 相关研究现状分析 目前,粒子群多目标算法在多目标优化领域得到了广泛应用,并在不同领域取得了一定的成果。研究者们也在不断探索

使用 Flask Web 框架来构建 Web 服务,提供 API 接口。

使用 Flask Web 框架来构建 Web 服务,提供 API 接口的步骤如下: 1. 安装 Flask 框架,可以使用 pip 工具进行安装:`pip install flask`。 2. 创建一个 Flask 应用,代码如下: ```python from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/predict', methods=['POST']) def predict(): # 接收客户端请求数据 data = request.get_json()