void SSTF() { printf("最短寻道 SSTF(从%d号磁道开始)\n",kai); printf("----------------------------------------------------\n"); printf("被访问的下一个磁道\t\t\t磁道号移动距离\n"); int k;//记录最近的磁道号 int su;//记录当前磁头所在位置 int shortest; //记录最短的距离 int s2[100]; ///用来记录路径的数组 memset(visit,1,sizeof(visit));//数组初始化为1 ,表示所有磁道都未被访问 su=kai; sum=0; for(int i=0;i<num;i++){ shortest=MAX; for(int j=0;j<num;j++){ //比较得出最近的磁道 if(visit[j]){ if(fabs(su-s[j])<shortest){ shortest=fabs(su-s[j]); k=j; } } } s1[i]=shortest;//记录移动的距离 su=s[k]; //跟踪当前磁头所在位置 visit[k]=0; //标记已访问 s2[i]=s[k]; //记录路径 } for(int i=0;i<num;i++){ sum=s1[i]+sum; }

时间: 2023-12-09 13:06:14 浏览: 32
这段代码实现的是最短寻道时间优先算法(SSTF),该算法是一种磁盘调度算法,其主要思想是优先访问距离当前磁头最近的磁道,以达到最小化寻道时间的目的。 具体实现过程如下: 1. 初始化visit数组为1,表示所有的磁道都未被访问过。 2. 初始化su为起始磁道号kai,sum为0。 3. 循环遍历所有的磁道,每次找到距离当前磁头最近的未被访问的磁道,并记录下该磁道的下标k、磁头移动的距离shortest、当前磁头位置su、已经访问过的磁道标记visit以及路径记录数组s2。 4. 计算磁头移动的距离shortest,并将其保存到s1数组中。 5. 更新当前磁头位置su为s[k],将visit[k]标记为0,表示该磁道已经被访问过,将s[k]记录到路径记录数组s2中。 6. 循环结束后,s1数组中保存了磁头移动的距离,s2数组中保存了访问的路径,sum为磁头移动的总距离。 需要注意的是,在SSTF算法中,磁头的移动方向是根据当前磁头位置和未访问的磁道位置来动态确定的,因此,在实际的算法实现中,需要根据当前磁头位置和未访问的磁道位置来计算磁头移动的距离,并选择距离最近的磁道进行访问。
相关问题

c语言磁盘调度算法:最短寻道时间优先(sstf)

最短寻道时间优先(SSTF)是一种常用的磁盘调度算法,它可以有效减少磁头的寻道时间,提高磁盘的读写效率。 SSTF算法的原理是选择距离当前磁头位置最近的磁道进行访问,以使磁头移动的距离尽可能地缩短。当有新的访问请求时,系统会根据当前磁头位置和其他请求的位置来确定下一个访问的磁道。通过不断地选择距离最近的磁道进行访问,可以尽快地完成所有的磁盘访问请求。 SSTF算法的优点是能够最大程度地减少平均寻道时间,提高了磁盘的读写效率。它相对于其他调度算法来说,更能够减少磁头的移动,从而降低了磁盘访问延迟,提高了系统的响应速度。 然而,SSTF算法的缺点也是比较明显的。由于SSTF算法总是先满足最近的请求,可能会造成较远位置的请求长时间得不到处理,从而影响了整体的磁盘访问效率。另外,SSTF算法对于随机请求并不适用,因为在这种情况下难以判断何时应该进行磁盘的访问操作。 总的来说,最短寻道时间优先(SSTF)是一种有效的磁盘调度算法,可以通过最小化磁头的移动来提高磁盘的读写效率,但是在某些特定情况下可能会出现效率不高的问题。

利用先来先服务FCFS,最短寻道时间优先SSTF,SCAN和循环SCAN算法模拟磁道访问过程, 模拟四种算法的磁道访问过程,给出每个磁道访问的磁头移动距离, 输入:磁道个数n和磁道访问序列,开始磁道号m和磁头移动方向(对SCAN和循环SCAN算法有效),算法选择1-FCFS,2-SSTF,3-SCAN,4-循环SCAN,输出:每种算法的平均寻道长度,用Java实现

好的,我会尽力回答你的问题。这是一个关于磁盘调度算法的问题,需要实现四种算法并计算它们的平均寻道长度。下面是一个 Java 实现的示例代码: ```java import java.util.*; public class DiskScheduling { public static void main(String[] args) { Scanner scan = new Scanner(System.in); // 输入磁道个数n和磁道访问序列 System.out.print("请输入磁道个数n:"); int n = scan.nextInt(); System.out.print("请输入磁道访问序列,以空格分隔:"); int[] requests = new int[n]; for (int i = 0; i < n; i++) { requests[i] = scan.nextInt(); } // 输入开始磁道号m和磁头移动方向 System.out.print("请输入开始磁道号m:"); int m = scan.nextInt(); System.out.print("请输入磁头移动方向(1表示向内,-1表示向外):"); int direction = scan.nextInt(); // 选择算法 System.out.print("请选择磁盘调度算法(1-FCFS,2-SSTF,3-SCAN,4-循环SCAN):"); int algorithm = scan.nextInt(); // 调用相应的算法计算平均寻道长度 double avgSeekTime = 0; switch (algorithm) { case 1: avgSeekTime = fcfs(requests, m); break; case 2: avgSeekTime = sstf(requests, m); break; case 3: avgSeekTime = scan(requests, m, direction); break; case 4: avgSeekTime = cscan(requests, m); break; default: System.out.println("输入错误,请重新输入!"); return; } // 输出平均寻道长度 System.out.println("平均寻道长度为:" + avgSeekTime); } // 先来先服务算法 public static double fcfs(int[] requests, int head) { int n = requests.length; int distance = 0; for (int i = 0; i < n; i++) { distance += Math.abs(requests[i] - head); head = requests[i]; } return (double) distance / n; } // 最短寻道时间优先算法 public static double sstf(int[] requests, int head) { int n = requests.length; int[] visited = new int[n]; Arrays.fill(visited, 0); int distance = 0; for (int i = 0; i < n; i++) { int minDistance = Integer.MAX_VALUE; int index = 0; for (int j = 0; j < n; j++) { if (visited[j] == 0 && Math.abs(requests[j] - head) < minDistance) { minDistance = Math.abs(requests[j] - head); index = j; } } visited[index] = 1; distance += minDistance; head = requests[index]; } return (double) distance / n; } // SCAN算法 public static double scan(int[] requests, int head, int direction) { int n = requests.length; Arrays.sort(requests); int index = 0; for (int i = 0; i < n; i++) { if (requests[i] > head) { index = i; break; } } int distance = 0; if (direction == 1) { if (index != 0) { for (int i = index - 1; i >= 0; i--) { distance += head - requests[i]; head = requests[i]; } } distance += head; head = 0; for (int i = index; i < n; i++) { distance += requests[i] - head; head = requests[i]; } } else { if (index != n) { for (int i = index; i < n; i++) { distance += requests[i] - head; head = requests[i]; } } distance += 2 * (n - index) * head; head = n - 1; for (int i = index - 1; i >= 0; i--) { distance += head - requests[i]; head = requests[i]; } } return (double) distance / n; } // 循环SCAN算法 public static double cscan(int[] requests, int head) { int n = requests.length; Arrays.sort(requests); int index = 0; for (int i = 0; i < n; i++) { if (requests[i] > head) { index = i; break; } } int distance = 0; if (index != 0) { for (int i = index - 1; i >= 0; i--) { distance += head - requests[i]; head = requests[i]; } } distance += head; head = n - 1; for (int i = n - 1; i >= index; i--) { distance += head - requests[i]; head = requests[i]; } distance += head; return (double) distance / n; } } ``` 以上代码实现了四种算法,分别是先来先服务算法(FCFS)、最短寻道时间优先算法(SSTF)、SCAN算法和循环SCAN算法。在输入磁道个数、磁道访问序列、开始磁道号和磁头移动方向后,可以选择相应的算法计算平均寻道长度。 其中,FCFS算法和SSTF算法比较简单,直接按照请求的顺序处理即可,计算距离时需要加上磁头移动的距离。SCAN算法和循环SCAN算法需要先将请求按照磁道号排序,然后根据磁头移动方向和当前磁头所在位置确定扫描的顺序。计算距离时需要考虑磁头的移动方向,以及到达边界时的特殊情况。最后,将计算出的总距离除以磁道个数,即可得到平均寻道长度。 希望这个代码能够解决你的问题,如果还有其他疑问,请随时提出。

相关推荐

最新推荐

recommend-type

磁盘调度先来先服务 最短寻道时间优先

本程序实现了几种常见的磁盘调度算法,包括先来先服务(FCFS)、最短寻道时间优先(SSTF)、扫描(SCAN)、循环扫描(CSCAN)以及N步扫描(NStepScan)。 **先来先服务(FCFS)算法**是最简单的磁盘调度策略,按照...
recommend-type

磁盘调度算法(最短寻道时间优先算法(SSTF) 扫描算法(SCAN) 先来先服务算法(FCFS) 循环扫描算法(CSCAN)....)

最短寻道时间优先算法(SSTF)是根据磁盘臂当前的位置和要访问的磁道的位置来确定下一个要访问的磁道的算法。该算法的实现思路是,操作系统选择当前磁道和要访问的磁道之间的距离最近的那个磁道作为下一个要访问的...
recommend-type

具有先来先服务算法和最短寻道时间优先算法的磁盘调度算法实现

2. 最短寻道时间优先算法(SSTF):该算法选择具有最短寻道时间的请求进行处理。 3. 扫描算法(SCAN):该算法按照磁道的位置进行扫描,选择距离当前磁头位置最近的请求进行处理。 4. 循环扫描算法(CSCAN):该算法...
recommend-type

操作系统实验5--磁盘管理实验报告.docx

要求模拟先来先服务法(First-Come, First-Served,FCFS),最短寻道时间优先法(Shortest Seek Time First, SSTF),电梯法三种磁盘调度算法,输入为一组请求访问磁道序列,输出为每种调度算法的磁头移动轨迹和...
recommend-type

C++实现的俄罗斯方块游戏

一个简单的俄罗斯方块游戏的C++实现,涉及基本的游戏逻辑和控制。这个示例包括了初始化、显示、移动、旋转和消除方块等基本功能。 主要文件 main.cpp:包含主函数和游戏循环。 tetris.h:包含游戏逻辑的头文件。 tetris.cpp:包含游戏逻辑的实现文件。 运行说明 确保安装SFML库,以便进行窗口绘制和用户输入处理。
recommend-type

电力电子系统建模与控制入门

"该资源是关于电力电子系统建模及控制的课程介绍,包含了课程的基本信息、教材与参考书目,以及课程的主要内容和学习要求。" 电力电子系统建模及控制是电力工程领域的一个重要分支,涉及到多学科的交叉应用,如功率变换技术、电工电子技术和自动控制理论。这门课程主要讲解电力电子系统的动态模型建立方法和控制系统设计,旨在培养学生的建模和控制能力。 课程安排在每周二的第1、2节课,上课地点位于东12教401室。教材采用了徐德鸿编著的《电力电子系统建模及控制》,同时推荐了几本参考书,包括朱桂萍的《电力电子电路的计算机仿真》、Jai P. Agrawal的《Powerelectronicsystems theory and design》以及Robert W. Erickson的《Fundamentals of Power Electronics》。 课程内容涵盖了从绪论到具体电力电子变换器的建模与控制,如DC/DC变换器的动态建模、电流断续模式下的建模、电流峰值控制,以及反馈控制设计。还包括三相功率变换器的动态模型、空间矢量调制技术、逆变器的建模与控制,以及DC/DC和逆变器并联系统的动态模型和均流控制。学习这门课程的学生被要求事先预习,并尝试对书本内容进行仿真模拟,以加深理解。 电力电子技术在20世纪的众多科技成果中扮演了关键角色,广泛应用于各个领域,如电气化、汽车、通信、国防等。课程通过列举各种电力电子装置的应用实例,如直流开关电源、逆变电源、静止无功补偿装置等,强调了其在有功电源、无功电源和传动装置中的重要地位,进一步凸显了电力电子系统建模与控制技术的实用性。 学习这门课程,学生将深入理解电力电子系统的内部工作机制,掌握动态模型建立的方法,以及如何设计有效的控制系统,为实际工程应用打下坚实基础。通过仿真练习,学生可以增强解决实际问题的能力,从而在未来的工程实践中更好地应用电力电子技术。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全

![图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全](https://static-aliyun-doc.oss-accelerate.aliyuncs.com/assets/img/zh-CN/2275688951/p86862.png) # 1. 图像写入的基本原理与陷阱 图像写入是计算机视觉和图像处理中一项基本操作,它将图像数据从内存保存到文件中。图像写入过程涉及将图像数据转换为特定文件格式,并将其写入磁盘。 在图像写入过程中,存在一些潜在陷阱,可能会导致写入失败或图像质量下降。这些陷阱包括: - **数据类型不匹配:**图像数据可能与目标文
recommend-type

protobuf-5.27.2 交叉编译

protobuf(Protocol Buffers)是一个由Google开发的轻量级、高效的序列化数据格式,用于在各种语言之间传输结构化的数据。版本5.27.2是一个较新的稳定版本,支持跨平台编译,使得可以在不同的架构和操作系统上构建和使用protobuf库。 交叉编译是指在一个平台上(通常为开发机)编译生成目标平台的可执行文件或库。对于protobuf的交叉编译,通常需要按照以下步骤操作: 1. 安装必要的工具:在源码目录下,你需要安装适合你的目标平台的C++编译器和相关工具链。 2. 配置Makefile或CMakeLists.txt:在protobuf的源码目录中,通常有一个CMa
recommend-type

SQL数据库基础入门:发展历程与关键概念

本文档深入介绍了SQL数据库的基础知识,首先从数据库的定义出发,强调其作为数据管理工具的重要性,减轻了开发人员的数据处理负担。数据库的核心概念是"万物皆关系",即使在面向对象编程中也有明显区分。文档讲述了数据库的发展历程,从早期的层次化和网状数据库到关系型数据库的兴起,如Oracle的里程碑式论文和拉里·埃里森推动的关系数据库商业化。Oracle的成功带动了全球范围内的数据库竞争,最终催生了SQL这一通用的数据库操作语言,统一了标准,使得关系型数据库成为主流。 接着,文档详细解释了数据库系统的构成,包括数据库本身(存储相关数据的集合)、数据库管理系统(DBMS,负责数据管理和操作的软件),以及数据库管理员(DBA,负责维护和管理整个系统)和用户应用程序(如Microsoft的SSMS)。这些组成部分协同工作,确保数据的有效管理和高效处理。 数据库系统的基本要求包括数据的独立性,即数据和程序的解耦,有助于快速开发和降低成本;减少冗余数据,提高数据共享性,以提高效率;以及系统的稳定性和安全性。学习SQL时,要注意不同数据库软件可能存在的差异,但核心语言SQL的学习是通用的,后续再根据具体产品学习特异性。 本文档提供了一个全面的框架,涵盖了SQL数据库从基础概念、发展历程、系统架构到基本要求的方方面面,对于初学者和数据库管理员来说是一份宝贵的参考资料。