请分析为什么两段代码输出的结果不同,第一段:import matplotlib.pyplot as plt import json import numpy as np from matplotlib.animation import FuncAnimation from mpl_toolkits.mplot3d import Axes3D with open('zdt.json') as f: cs=json.load(f) value = cs["G12_S5"] my_array = np.array(value) x, y = np.meshgrid(np.arange(88), np.arange(88)) z = my_array fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface(x, y, z, cmap="jet") ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.show() 第二段:import matplotlib.pyplot as plt import json import numpy as np from matplotlib.animation import FuncAnimation from mpl_toolkits.mplot3d import Axes3D with open('zdt.json') as f: cs=json.load(f) value = cs["G12_S5"] my_array = np.array(value) x, y = np.meshgrid(np.arange(88), np.arange(88)) z = my_array fig = plt.figure() ax = fig.add_subplot(111, projection='3d') #ax.plot_surface(x, y, z, cmap="hot") #plt.show() print(x)
时间: 2023-05-18 13:03:07 浏览: 116
ax.plot_surface(x, y, z, cmap="jet", rstride=1, cstride=1) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.show()
第一段代码输出的结果是一个平滑的曲面,而第二段代码输出的结果是一个由小方块组成的曲面。这是因为第二段代码中的plot_surface函数增加了两个参数rstride和cstride,它们控制着曲面上的行和列的跨度,即每个小方块的大小。默认情况下,rstride和cstride都是1,即每个小方块的大小与网格大小相同,因此曲面看起来像是由小方块组成的。如果将rstride和cstride设置为较大的值,曲面就会变得更加平滑。
相关问题
请分析为什么两段代码输出的结果不同,第一段:import matplotlib.pyplot as plt import json import numpy as np from matplotlib.animation import FuncAnimation from mpl_toolkits.mplot3d import Axes3D with open('zdt.json') as f: cs=json.load(f) value = cs["G12_S5"] my_array = np.array(value) x, y = np.meshgrid(np.arange(88), np.arange(88)) z = my_array fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface(x, y, z, cmap="jet") ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.show() 第二段:import matplotlib.pyplot as plt import json import numpy as np from matplotlib.animation import FuncAnimation from mpl_toolkits.mplot3d import Axes3D with open('zdt.json') as f: cs=json.load(f) value = cs["G12_S5"] my_array = np.array(value) x, y = np.meshgrid(np.arange(88), np.arange(88)) z = my_array fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface(x, y, z, cmap="jet") plt.show()
答:两段代码输出的结果不同是因为第一段代码设置了坐标轴标签,而第二段代码没有设置。在第一段代码中,ax.set_xlabel('X Label')、ax.set_ylabel('Y Label')、ax.set_zlabel('Z Label')这三行代码设置了三个坐标轴的标签,而第二段代码中只有ax.plot_surface(x, y, z, cmap="jet")这一行代码绘制了图形,没有设置坐标轴标签。
代码解析:import os import numpy as np import matplotlib.pyplot as plt from PIL import Image import neurolab as nl
这段代码导入了四个库:os、numpy、matplotlib和PIL。其中,os库提供了一些与操作系统交互的功能,如文件和目录处理。numpy库则提供了对多维数组的支持,以及各种数学函数和线性代数操作。matplotlib库是用于绘制图形的库,可以生成各种类型的图形,如折线图、散点图、直方图等。最后,PIL库是Python图像处理库,提供了对图像文件的读取、修改、保存等功能。这段代码还导入了neurolab库,这是一个用于神经网络模型设计和训练的Python库。
阅读全文