prim算法时间复杂度分析
时间: 2023-11-04 07:22:04 浏览: 95
算法的时间复杂度分析
Prim算法是一种用于求解无向图的最小生成树的贪心算法,时间复杂度为O(n^2),其中n为顶点数。具体分析如下:
1. 初始化dist数组和visited数组,时间复杂度为O(n)。
2. 进行主循环,共需要执行n次,时间复杂度为O(n)。在每次循环中,需要遍历所有未访问的顶点,时间复杂度为O(n)。在遍历的过程中,需要更新dist数组和visited数组,时间复杂度为O(1)。
3. 在每次遍历中,需要查找dist数组中的最小值,时间复杂度为O(n)。因此,总共需要查找n次,总时间复杂度为O(n^2)。
4. 总时间复杂度为O(n^2)。
需要注意的是,Prim算法的时间复杂度与图的稠密程度有关。当图非常稠密时,即顶点数与边数同阶时,时间复杂度会达到O(n^3)。因此,对于稠密图,应该选择其他算法来求解最小生成树,如Kruskal算法。
阅读全文