clear all; close all; ts=0.001; for k=1:1:2001 xd(k)=cos((k-1)*pi*ts); yd(k)=sin((k-1)*pi*ts); thd(k)=ts*pi*(k-1)+pi/2; end for k=1:1:2001 u1(k)=0;u2(k)=0; e1(k)=0;e2(k)=0; e3(k)=0; end y0=[1;0;pi/2]; M=20; for i=0:1:M i pause(0.01); for k=1:1:2001 if k==1 q=y0; end xp(k)=q(1); yp(k)=q(2); th(k)=q(3); qd=[xd(k);yd(k);thd(k)]; ce1(k)=qd(1)-q(1); ce2(k)=qd(2)-q(2); ce3(k)=qd(3)-q(3); u=[u1(k);u2(k)]; B=ts*[cos(q(3)) 0 sin(q(3)) 0 0 1]; L1=10*[cos(q(3)) sin(q(3)) 0; 0 0 1]; L2=L1; cond=norm(eye(2)-L1*B); U=u+L1*[e1(k);e2(k);e3(k)]+L2*[ce1(k);ce2(k);ce3(k)]; u1(k)=U(1); u2(k)=U(2); u=[u1(k);u2(k)]; q=q+B*u; e1(k)=cos(k*ts*pi)-q(1); e2(k)=sin(k*ts*pi)-q(2); e3(k)=ts*k*pi+pi/2-q(3); end figure(1); hold on; plot(xd,yd,'r',xp,yp,'b'); xlabel('xd xp');ylabel('yd,yp'); j=i+1; times(j)=j-1; e1i(j)=max(abs(ce1)); e2i(j)=max(abs(ce2)); e3i(j)=max(abs(ce3)); end figure(2); plot(xd,yd,'r',xp,yp,'b'); xlabel('xd xp');ylabel('yd,yp'); figure(3); plot(times,e1i,'*-r',times,e2i,'o-b',times,e3i,'o-k'); title('Change of maximum absolute value of error1,error2 and angle with times i'); xlabel('times');ylabel('e1,e2 and angle');

时间: 2024-03-28 16:36:19 浏览: 58
这是一段 MATLAB 代码,用于模拟一个控制系统。它包括两个 for 循环,第一个循环用于生成输入信号和期望输出,第二个循环用于模拟控制系统的行为。其中,变量 xd 和 yd 分别表示输入信号的 x 和 y 分量,thd 表示期望输出的角度;变量 xp 和 yp 分别表示实际输出的 x 和 y 分量,th 表示实际输出的角度;变量 u1 和 u2 表示控制器的输出信号,e1、e2 和 e3 分别表示位置误差、速度误差和角度误差;变量 ce1、ce2 和 ce3 分别表示当前位置误差、速度误差和角度误差与期望值的最大值;变量 times、e1i、e2i 和 e3i 分别表示循环次数、位置误差、速度误差和角度误差与时间的关系。
相关问题

clear all; close all; ts=0.001; for k=1:1:2001 xd(k)=cos((k-1)pits); yd(k)=sin((k-1)pits); thd(k)=tspi(k-1)+pi/2; end for k=1:1:2001 u1(k)=0;u2(k)=0; e1(k)=0;e2(k)=0; e3(k)=0; end y0=[1;0;pi/2]; M=20; for i=0:1:M i pause(0.001); for k=1:1:2001 if k==1 q=y0; end xp(k)=q(1); yp(k)=q(2); th(k)=q(3); qd=[xd(k);yd(k);thd(k)]; ce1(k)=qd(1)-q(1); ce2(k)=qd(2)-q(2); ce3(k)=qd(3)-q(3); u=[u1(k);u2(k)]; B=ts*[cos(q(3)) 0 sin(q(3)) 0 0 1]; L1=10*[cos(q(3)) sin(q(3)) 0; 0 0 1]; L2=L1; cond=norm(eye(2)-L1B); U=u+L1+L2*[ce1(k);ce2(k);ce3(k)]; u1(k)=U(1); u2(k)=U(2); u=[u1(k);u2(k)]; q=q+Bu; e1(k)=cos(ktspi)-q(1); e2(k)=sin(ktspi)-q(2); e3(k)=tskpi+pi/2-q(3); end figure(1); hold on; plot(xd,yd,'r',xp,yp,'b'); xlabel('xd xp');ylabel('yd,yp'); j=i+1; times(j)=j-1; e1i(j)=max(abs(ce1)); e2i(j)=max(abs(ce2)); e3i(j)=max(abs(ce3)); end figure(2); plot(xd,yd,'r',xp,yp,'b'); xlabel('xd xp');ylabel('yd,yp'); figure(3); plot(times,e1i,'-r',times,e2i,'o-b',times,e3i,'o-k'); title('Change of maximum absolute value of e1,e2 and angle with times i'); xlabel('times');ylabel('e1,e2 and angle');

这段代码存在一些语法错误,可能是因为复制时出现了一些问题。我对代码进行了一些修改,如下所示。你可以试着运行一下,看看是否可以正常工作。 ``` clear all; close all; ts = 0.001; pits = pi/180; tspi = (1:2001) * ts; for k = 1:1:2001 xd(k) = cos((k-1) * pits); yd(k) = sin((k-1) * pits); thd(k) = tspi(k-1) + pi/2; end for k = 1:1:2001 u1(k) = 0; u2(k) = 0; e1(k) = 0; e2(k) = 0; e3(k) = 0; end y0 = [1; 0; pi/2]; M = 20; for i = 0:1:M pause(0.001); for k = 1:1:2001 if k == 1 q = y0; end xp(k) = q(1); yp(k) = q(2); th(k) = q(3); qd = [xd(k); yd(k); thd(k)]; ce1(k) = qd(1) - q(1); ce2(k) = qd(2) - q(2); ce3(k) = qd(3) - q(3); u = [u1(k); u2(k)]; B = ts * [cos(q(3)), 0; sin(q(3)), 0; sin(q(3)), 0; 0, 0; 0, 0; 1, 0]; L1 = 10 * [cos(q(3)), sin(q(3)), 0; 0, 0, 1]; L2 = L1; cond = norm(eye(2) - L1 * B); U = u + L1 * [e1(k); e2(k); e3(k)] + L2 * [ce1(k); ce2(k); ce3(k)]; u1(k) = U(1); u2(k) = U(2); u = [u1(k); u2(k)]; q = q + B * u; e1(k) = cos(k * tspi) - q(1); e2(k) = sin(k * tspi) - q(2); e3(k) = ts * k * pi + pi/2 - q(3); end figure(1); hold on; plot(xd, yd, 'r', xp, yp, 'b'); xlabel('xd xp'); ylabel('yd,yp'); j = i + 1; times(j) = j - 1; e1i(j) = max(abs(ce1)); e2i(j) = max(abs(ce2)); e3i(j) = max(abs(ce3)); end figure(2); plot(xd, yd, 'r', xp, yp, 'b'); xlabel('xd xp'); ylabel('yd,yp'); figure(3); plot(times, e1i, '-r', times, e2i, 'o-b', times, e3i, 'o-k'); title('Change of maximum absolute value of e1,e2 and angle with times i'); xlabel('times'); ylabel('e1,e2 and angle'); ``` 这里还存在一些问题,例如,第30行的 `ktspi` 变量没有定义,需要根据具体的需求进行修改。同时,该代码中存在一些算法上的问题,需要进行进一步的检查和修改才能保证正确性。

clear all; close all; ts=0.001; for k=1:1:2001 xd(k)=cos((k-1)*pi*ts); yd(k)=sin((k-1)*pi*ts); thd(k)=ts*pi*(k-1)+pi/2; end for k=1:1:2001 u1(k)=0;u2(k)=0; e1(k)=0;e2(k)=0; e3(k)=0; end y0=[1;0;pi/2]; M=20; for i=0:1:M i pause(0.001); for k=1:1:2001 if k==1 q=y0; end xp(k)=q(1); yp(k)=q(2); th(k)=q(3); qd=[xd(k);yd(k);thd(k)]; ce1(k)=qd(1)-q(1); ce2(k)=qd(2)-q(2); ce3(k)=qd(3)-q(3); u=[u1(k);u2(k)]; B=ts*[cos(q(3)) 0 sin(q(3)) 0 0 1]; L1=10*[cos(q(3)) sin(q(3)) 0; 0 0 1]; L2=L1; cond=norm(eye(2)-L1*B); U=u+L1*[e1(k);e2(k);e3(k)]+L2*[ce1(k);ce2(k);ce3(k)]; u1(k)=U(1); u2(k)=U(2); u=[u1(k);u2(k)]; q=q+B*u; e1(k)=cos(k*ts*pi)-q(1); e2(k)=sin(k*ts*pi)-q(2); e3(k)=ts*k*pi+pi/2-q(3); end figure(1); hold on; plot(xd,yd,'r',xp,yp,'b'); xlabel('xd xp');ylabel('yd,yp'); j=i+1; times(j)=j-1; e1i(j)=max(abs(ce1)); e2i(j)=max(abs(ce2)); e3i(j)=max(abs(ce3)); end figure(2); plot(xd,yd,'r',xp,yp,'b'); xlabel('xd xp');ylabel('yd,yp'); figure(3); plot(times,e1i,'*-r',times,e2i,'o-b',times,e3i,'o-k'); title('Change of maximum absolute value of e1,e2 and angle with times i'); xlabel('times');ylabel('e1,e2 and angle');

这段代码是一个基于模型预测控制的控制器,用于实现一个机器人沿着一个预定轨迹运动。代码中,首先定义了预定轨迹的 x、y 坐标和角度 thd,然后初始化控制输入量 u1 和 u2,以及误差变量 e1、e2 和 e3。接着,定义了机器人的初始状态 y0,并设置了控制时域 ts 和迭代次数 M。在主循环中,通过模型预测控制算法计算出控制输入量 u,并更新机器人的状态 q。同时,记录了每次迭代过程中误差变量 e1、e2 和 e3 的最大值,并在最后绘制了它们随时间变化的曲线。最后,绘制了机器人的实际轨迹和预定轨迹。整个代码的目的是为了实现一个能够沿着预定轨迹移动的机器人,并通过最小化误差来优化控制效果。
阅读全文

相关推荐

clear all; close all; ts = 0.001; a = 1; % 椭圆长轴 b = 0.5; % 椭圆短轴 t = linspace(0, 2*pi, 2001); % 生成一个周期为 2*pi 的时间序列 xd = a*cos(t); % x 轴坐标 yd = b*sin(t); % y 轴坐标 thd = atan2(-b*sin(t), a*cos(t)); % 计算椭圆轨迹上点的角度 for k=1:1:2001 u1(k) = 0; u2(k) = 0; e1(k) = 0; e2(k) = 0; e3(k) = 0; end y0 = [1;0;pi/2]; M = 20; theta = [0;0;0;0;0;0]; % MRAC 参数 for i=0:1:M pause(0.001); for k=1:1:2001 if k==1 q=y0; end xp(k) = q(1); yp(k) = q(2); th(k) = q(3); qd = [xd(k);yd(k);thd(k)]; ce1(k) = qd(1)-q(1); ce2(k) = qd(2)-q(2); ce3(k) = qd(3)-q(3); u = [u1(k);u2(k)]; B = ts*[cos(q(3)) 0 sin(q(3)) 0 0 1; 0 cos(q(3)) 0 sin(q(3)) -1 0]; L1 = [theta(1) theta(2) 0; 0 0 theta(3)]; L2 = [theta(4) theta(5) 0; 0 0 theta(6)]; cond = norm(eye(2)-L1*B); U = u+L1*[e1(k);e2(k);e3(k)]+L2*[ce1(k);ce2(k);ce3(k)]; u1(k) = U(1); u2(k) = U(2); u = [u1(k);u2(k)]; q = q+B*u; e1(k) = cos(k*ts*pi)-q(1); e2(k) = sin(k*ts*pi)-q(2); e3(k) = ts*k*pi+pi/2-q(3); if i > 0 x = [e1(k); e2(k); e3(k); xd(k); yd(k); thd(k)]; dx = [B*u; 0; 0]; dtheta = -0.5*sign(cond)*L1*(dx-x'*B')*x; theta = theta + dtheta*ts; end end figure(1); hold on; plot(xd, yd, 'r', xp, yp, 'b'); xlabel('xd xp');ylabel('yd,yp'); j = i+1; times(j) = j-1; e1i(j) = max(abs(e1)); e2i(j) = max(abs(e2)); e3i(j) = max(abs(e3)); end figure(2); plot(xd, yd, 'r', xp, yp, 'b'); xlabel('xd xp');ylabel('yd,yp'); figure(3); plot(times, e1i, '*-r', times, e2i, 'o-b', times, e3i, 'o-k'); title('Change of maximum absolute value of e1,e2 and angle with times i'); xlabel('times');ylabel('e1,e2 and angle');

最新推荐

recommend-type

三星K2200打印机进入维修模式并且清除传输卷寿命的方法.docx

三星K2200打印机是一款经济实用的激光打印机,它为个人和小型办公室提供了高效、可靠的打印解决方案。然而,随着时间的推移,打印机的一些组件可能会达到其设计寿命,例如传输卷。传输卷是打印机内部一个关键部件,...
recommend-type

tensorflow 2.0模式下训练的模型转成 tf1.x 版本的pb模型实例

在TensorFlow 2.0中,模型训练变得更加方便和高效,但有时为了兼容旧系统或者利用TensorFlow 1.x的一些特性,我们需要将2.0版本训练的模型转换为1.x版本的.pb模型。这里我们将详细讲解如何实现这个过程,特别关注在...
recommend-type

hy-1c数据读取.docx

close all; clear; clc; dir='E:\HY\H1C_OPER_OCT_L2A_20191103T052500_20191103T053000_06057_10\'; file=[dir,'H1C_OPER_OCT_L2A_20191103T052500_20191103T053000_06057_10.h5']; Lat=h5read(file,'/Navigation ...
recommend-type

精细金属掩模板(FMM)行业研究报告 显示技术核心部件FMM材料产业分析与市场应用

精细金属掩模板(FMM)作为OLED蒸镀工艺中的核心消耗部件,负责沉积RGB有机物质形成像素。材料由Frame、Cover等五部分组成,需满足特定热膨胀性能。制作工艺包括蚀刻、电铸等,影响FMM性能。适用于显示技术研究人员、产业分析师,旨在提供FMM材料技术发展、市场规模及产业链结构的深入解析。
recommend-type

【创新未发表】斑马算法ZOA-Kmean-Transformer-LSTM负荷预测Matlab源码 9515期.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:Main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2024b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除Main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化Kmean-Transformer-LSTM负荷预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化Kmean-Transformer-LSTM负荷预测 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化Kmean-Transformer-LSTM负荷预测 4.4.3 灰狼算法GWO/狼群算法WPA优化Kmean-Transformer-LSTM负荷预测 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化Kmean-Transformer-LSTM负荷预测 4.4.5 萤火虫算法FA/差分算法DE优化Kmean-Transformer-LSTM负荷预测 4.4.6 其他优化算法优化Kmean-Transformer-LSTM负荷预测
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。