def read(pat, freq=1. / 200, cut_hours=0): hours = cut_hours string = 'PatID%d' % pat for files in os.walk(string): # if dp-file does not exist f = sorted(files[2]) CSF = f[0] Ventricles = f[1] toss = 1. / freq * 2 * 60 * 60 dp, p1, p2 = filters(string + '/' + CSF, string + '/' + Ventricles) if hours != 0: dp, p1, p2 = dp[toss:-toss * hours], p1[toss:-toss * hours], p2[toss:-toss * hours] daytime = CSF.split('_')[3] t0 = float(daytime[:2]) * 3600 + float(daytime[2:4]) * 60 + float(daytime[4:]) + 2 * 60 * 60 t1 = t0 + (len(dp) - 1) * freq T = (len(dp) - 1) * freq t = linspace(0, T, len(dp)) return daytime, t, dp, p1, p2解释代码

时间: 2024-04-07 18:29:45 浏览: 53
这段代码是一个Python函数,函数名为read,接收三个参数pat、freq和cut_hours。 函数首先将字符串'PatID%d' % pat与当前目录下的子目录名拼接起来,作为输入文件的路径。 然后通过os.walk函数遍历该目录及其子目录,找到其中名为CSF和Ventricles的两个文件。 接下来,函数调用filters函数对这两个文件进行滤波处理,得到dp、p1和p2三个数组。 如果cut_hours参数不为0,则从dp、p1和p2中截取掉前toss * cut_hours个数据点。 接着,函数从CSF文件名中提取出时间信息,计算出数据采样起始时间t0和采样结束时间t1,以及总共采样的时间长度T。 最后,函数使用linspace函数生成从0到T的等差数列t,并将计算出的时间序列t、dp、p1和p2返回。
相关问题

def low_pass_filter(y, sr, cutoff_freq): nyq_freq = sr / 2 norm_cutoff_freq = cutoff_freq / nyq_freq b, a = signal.butter(4, norm_cutoff_freq, 'low') return signal.filtfilt(b, a, y) y_low_pass = low_pass_filter(y, sr, 500) # 普通滤波

这段代码实现了一个低通滤波器,可以通过指定截止频率来滤除高频信号,从而达到降噪的效果。具体的实现过程如下: 1. 计算采样率的一半,即Nyquist频率。 2. 将所需的截止频率转化为归一化频率,即除以Nyquist频率。 3. 使用signal.butter函数设计一个4阶低通滤波器,得到滤波器系数b和a。 4. 使用signal.filtfilt函数对输入信号y进行滤波,得到滤波后的输出信号y_low_pass。 其中,signal.butter函数是利用巴特沃斯滤波器设计方法生成滤波器系数的函数,signal.filtfilt函数是利用前向-后向滤波器实现的零相移滤波函数,可以有效避免相位失真的问题。 在上述代码中,我们通过调用low_pass_filter函数,将输入信号y和采样率sr以及所需的截止频率cutoff_freq作为参数传递给函数,函数返回低通滤波后的输出信号y_low_pass。具体使用时,我们可以将y_low_pass作为下一步滤波方法的输入信号。

优化这段import numpy as np import matplotlib.pyplot as plt %config InlineBackend.figure_format='retina' def generate_signal(t_vec, A, phi, noise, freq): Omega = 2*np.pi*freq return A * np.sin(Omega*t_vec + phi) + noise * (2*np.random.random def lock_in_measurement(signal, t_vec, ref_freq): Omega = 2*np.pi*ref_freq ref_0 = 2*np.sin(Omega*t_vec) ref_1 = 2*np.cos(Omega*t_vec) # signal_0 = signal * ref_0 signal_1 = signal * ref_1 # X = np.mean(signal_0) Y = np.mean(signal_1) # A = np.sqrt(X**2+Y**2) phi = np.arctan2(Y,X) print("A=", A, "phi=", phi) # t_vec = np.linspace(0, 0.2, 1001) A = 1 phi = np.pi noise = 0.2 ref_freq = 17.77777 # signal = generate_signal(t_vec, A, phi, noise, ref_freq) # lock_in_measurement(signal, t_vec, ref_freq)

你可以优化这段代码的一些地方。首先,你可以将import语放在代码的开,这样可以更清晰地看到你使用了哪些库。其次,你可以将生成信号和锁相测量的函数封装到一个类中,这样可以更好地组织代码。最后,你可以将生成信号和锁相测量的参数作为函数的参数传递进去,而不是在函数内部硬编码。这样可以增加代码的灵活性。以下是优化后的代码示例: ```python import numpy as np import matplotlib.pyplot as plt class SignalGenerator: def __init__(self, t_vec, A, phi, noise, freq): self.t_vec = t_vec self.A = A self.phi = phi self.noise = noise self.freq = freq def generate_signal(self): Omega = 2*np.pi*self.freq return self.A * np.sin(Omega*self.t_vec + self.phi) + self.noise * (2*np.random.random) def lock_in_measurement(self, signal, ref_freq): Omega = 2*np.pi*ref_freq ref_0 = 2*np.sin(Omega*self.t_vec) ref_1 = 2*np.cos(Omega*self.t_vec) signal_0 = signal * ref_0 signal_1 = signal * ref_1 X = np.mean(signal_0) Y = np.mean(signal_1) A = np.sqrt(X**2 + Y**2) phi = np.arctan2(Y, X) print("A=", A, "phi=", phi) # 示例使用 t_vec = np.linspace(0, 0.2, 1001) A = 1 phi = np.pi noise = 0.2 ref_freq = 17.77777 generator = SignalGenerator(t_vec, A, phi, noise, ref_freq) signal = generator.generate_signal() generator.lock_in_measurement(signal, ref_freq) ``` 这样,你可以更方便地复用代码,并且可以通过修改构造函数的参数来调整生成信号和锁相测量的设置。
阅读全文

相关推荐

优化这段import numpy as np import matplotlib.pyplot as plt %config InlineBackend.figure_format='retina' # 输入信号 def inputVoltageSignal_func(t_vec, A, phi, noise, freq): Omega = 2np.pifreq return Anp.sin(Omegat_vec + phi) + noise * (2np.random.random(t_vec.size)-1) # 锁相测量部分 def LockinMeasurement_func(inputVoltageSignal, t_vec, ref_freq): # 生成参考信号 sin_ref = 2np.sin(2 * np.pi * ref_freq * t_vec) cos_ref = 2*np.cos(2 * np.pi * ref_freq * t_vec) # 混频信号 signal_0 = inputVoltageSignal * sin_ref signal_1 = inputVoltageSignal * cos_ref # 低通滤波 X = np.mean(signal_0) Y = np.mean(signal_1) # 计算振幅和相位 A = np.sqrt(X2 + Y2) phi = np.arctan2(Y, X) return A, phi # 参数 A = 1 phi = 0 noise = 1 ref_freq = 100 t_vec = np.linspace(0, 0.2, 1001) # 列表来保存幅值和相位数据 amplitude_list = [] phase_list = [] freq_list = np.arange(1, 1001) # 循环计算不同频率下的幅值和相位 for freq in freq_list: # 生成原始信号 Vin_vec = inputVoltageSignal_func(t_vec, A, phi, noise, freq=freq) # 锁相测量 A, phi = LockinMeasurement_func(Vin_vec, t_vec, ref_freq=freq) # 保存幅值和相位数据 amplitude_list.append(A) phase_list.append(phi) #绘图 # 幅值与频率的关系图 plt.figure(figsize=(10, 6)) plt.subplot(2,1,1) plt.plot(freq_list, amplitude_list) plt.xlabel('freq (Hz)') plt.ylabel('A') plt.title('relationship between A and freq') plt.show() # 相位与频率的关系图 plt.figure(figsize=(10, 6)) plt.subplot(2,1,2) plt.plot(freq_list, phase_list) plt.xlabel('freq (Hz)') plt.ylabel('Phi') plt.title('relationship between Phi and freq') plt.show()使用while循环

% 定义一些常量fft_size = 2048;hop_size = fft_size/4;min_freq = 80;max_freq = 1000;% 读取音频文件filename = 'example.aac';[x, Fs] = audioread(filename);% 计算音高[f0, ~] = yin(x, Fs, fft_size, hop_size, min_freq, max_freq);f0 = medfilt1(f0, 5); % 中值滤波midi = freq2midi(f0);% 计算主音调[~, max_idx] = max(histcounts(midi, 1:128));dominant_note = max_idx - 1;% 输出结果fprintf('主音调:%.2f Hz\n', midi2freq(dominant_note));function [f0, rms_energy] = yin(x, fs, fft_size, hop_size, min_freq, max_freq)% YIN算法计算音频信号的基频% 初始化变量n_frames = floor((length(x)-fft_size)/hop_size) + 1;f0 = zeros(n_frames, 1);rms_energy = zeros(n_frames, 1);% 计算自相关函数x = x(:);x = [x; zeros(fft_size, 1)];acf = xcorr(x, fft_size, 'coeff');acf = acf(ceil(length(acf)/2):end);% 计算差值函数d = zeros(fft_size, n_frames);for i = 1:n_frames frame = x((i-1)*hop_size+1:(i-1)*hop_size+fft_size); for tau = 1:fft_size d(tau, i) = sum((frame(1:end-tau) - frame(1+tau:end)).^2); endend% 计算自相关函数的倒数acf_recip = acf(end:-1:1);acf_recip(1) = acf_recip(2);acf_recip = acf_recip.^(-1);% 计算累积平均能量running_sum = 0;for i = 1:n_frames running_sum = running_sum + sum(x((i-1)*hop_size+1:(i-1)*hop_size+fft_size).^2); rms_energy(i) = sqrt(running_sum/fft_size);end% 计算基频for i = 1:n_frames r = acf_recip./(acf(i:end).*acf_recip(1:end-i+1)); r(1:i) = 0; r(max_freq/fs*fft_size+1:end) = 0; [~, j] = min(r(min_freq/fs*fft_size+1:max_freq/fs*fft_size)); f0(i) = fs/j;endendfunction midi = freq2midi(freq)% 将频率转换为MIDI码midi = 12*log2(freq/440) + 69;endfunction freq = midi2freq(midi)% 将MIDI码转换为频率freq = 440*2^((midi-69)/12);end对于此运算,数组的大小不兼容。 出错 yin (第 26 行) r = acf_recip./(acf(i:end).*acf_recip(1:end-i+1)); 出错 untitled2 (第 8 行) [f0, ~] = yin(x, Fs, fft_size, hop_size, min_freq, max_freq);请修改以上错误

最新推荐

recommend-type

yolov5s nnie.zip

yolov5s nnieyolov5-nnieyolov5s nnieYOLOv5 pytorch -> onnx -> caffe -> .wk 1、模型是yolov5s,将focus层替换成stride为2的卷积层。reshape和permute层也做了调整。具体的修改过程可以参考这个大佬的文章https://blog.csdn.net/tangshopping/article/details/1100386052、模型是在hi3559av100上跑的,mapper版本是1.2。3、用法mkdir buildcd buildcmake -DCMAKE_TOOLCHAIN_FILE=../hi3559.toolchain.cmake ..make -j4./yolo_nnie参考https://blog.csdn.net/tangshopping/article/details/110038605watermelooon/nnie_yolohttps://github.com/ultralytics/yolov5https://githu
recommend-type

基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明

基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明,本资源中的源码都是经过本地编译过可运行的,评审分达到98分,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。 基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明,本基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明资源中的源码都是经过本地编译过可运行的,评审分达到98分,基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。 本资源中的源码都是经过本地编译过可运行的,评审分达到98分,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。本资源中的源码都是经过本地编译过可运行的,评审分达到98分
recommend-type

使用Java写的一个简易的贪吃蛇小游戏.zip

使用Java写的一个简易的贪吃蛇小游戏.zip数据
recommend-type

计算机网络概述.docx

计算机网络概述概念:网络把主机连接起来,而互联网是把多种不同的网络连接起来,因此互联网是网络的网络。计算机网络主要包括三个部分:计算机(包括客户端、服务器)网络设备(路由器、交换机、防火墙等)传输介质(有线和无线) ISP 互联网服务提供商ISP可以从互联网管理机构获得许多IP地址,同时拥有通信线路以及路由器等联网设备,个人或机构向ISP缴纳一定的费用就可以接入互联网。 目前的互联网是一种多层次ISP结构,ISP根据覆盖面积的大小分为主干ISP、地区ISP和本地ISP。互联网交换点IXP允许两个ISP直接相连而不用经过第三个ISP。 主机之间的通信方式 1、客户-服务器(C/S) 客户即是服务请求方,服务器是服务提供方。2、对等(P2P) 不区分客户和服务器 时延总时延=发送时延+传播时延+处理时延+排队时延计算机网络体系结构OSI:应用层、表示层、会话层、传输层、网络层、数据链路层、物理层五层协议:应用层、运输层、网络层、数据链路层、物理层TCP/IP:应用层、运输层、网际层、网络接口层 带通调制 模拟信号是连续的信号,数字信号是离散的信号。带通调制把数字信号转换为模拟信号。数据
recommend-type

数学建模学习资料 姜启源数学模型课件 M06 稳定性模型 共46页.pptx

数学建模学习资料 姜启源数学模型课件 M06 稳定性模型 共46页.pptx
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。