帮我写一个CNN卷积神经网络的代码,来识别手写数字的图片,以pytorch为环境
时间: 2024-09-15 21:13:08 浏览: 58
当然可以。首先,我们需要导入必要的库并设置一些基本配置。在这个例子中,我们将使用PyTorch构建一个简单的卷积神经网络(Convolutional Neural Network,简称CNN),用于MNIST数据集的手写数字识别。这是一个简化的版本,实际项目可能需要更多的优化。
```python
# 导入所需库
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
# 定义CNN模型
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(32 * 7 * 7, 128)
self.relu3 = nn.ReLU()
self.fc2 = nn.Linear(128, 10) # 输出层,10表示MNIST的10个类别
def forward(self, x):
x = self.conv1(x)
x = self.relu1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.relu2(x)
x = self.pool2(x)
x = x.view(-1, 32 * 7 * 7) # 扁平化
x = self.fc1(x)
x = self.relu3(x)
out = self.fc2(x)
return out
model = SimpleCNN().to(device)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练过程
num_epochs = 10
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images, labels = images.to(device), labels.to(device)
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(train_loader)}], Loss: {loss.item():.4f}')
# 测试模型
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Test Accuracy of the model on the 10000 test images: {100 * correct / total}%')
```
这个代码示例创建了一个基础的卷积神经网络,包括两个卷积层、池化层以及全连接层。在训练过程中,它会打印出每轮的损失,并在测试阶段计算准确率。
阅读全文