linux Semaphore驱动

时间: 2024-08-29 19:03:03 浏览: 55
Linux semaphore是一种同步原语,它类似于一种信号量,用于控制对共享资源的访问。Semaphore驱动是内核的一部分,通常在需要协调多个任务或进程间互斥访问公共资源的时候使用。它们的工作原理基于两个基本操作: 1. 获取(P操作):尝试获取一个semaphore。如果当前可用,进程会获得这个计数值;如果已被其他进程占用,则进程会被阻塞直到计数值增加。 2. 释放(V操作):释放一个semaphore,将它的值加一。如果有等待的进程,这将唤醒其中一个并允许其继续执行。 Semaphore驱动常用于网络设备、内存管理等场景,比如在并发环境中限制队列的大小或确保某些操作按照特定顺序执行。通过使用semaphores,系统可以避免数据竞争和死锁等问题,提高程序的可靠性。
相关问题

写一个linux 蓝牙驱动

写一个 Linux 蓝牙驱动需要掌握以下几个步骤: 1. 注册蓝牙设备:使用 `register_chrdev()` 函数注册一个字符设备,将其作为蓝牙设备的接口。 2. 实现蓝牙协议栈:在驱动中实现蓝牙协议栈,包括 L2CAP、RFCOMM、HCI 等协议层。 3. 实现蓝牙设备的控制命令:蓝牙设备需要通过控制命令来进行控制和配置,例如设置设备名称、扫描设备、建立连接等。 4. 实现数据传输功能:蓝牙设备需要实现数据传输功能,包括数据接收和发送。 下面是一个简单的 Linux 蓝牙驱动示例: ```c #include <linux/module.h> #include <linux/device.h> #include <linux/fs.h> #include <linux/uaccess.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/version.h> #include <linux/kernel.h> #include <linux/cdev.h> #include <linux/init.h> #include <linux/moduleparam.h> #include <linux/proc_fs.h> #include <linux/string.h> #include <linux/usb.h> #include <linux/usb/ch9.h> #include <linux/hid.h> #include <linux/hidraw.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/ioctl.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/kfifo.h> #include <linux/workqueue.h> #include <linux/semaphore.h> #include <linux/sched/signal.h> #include <linux/delay.h> #include <linux/bitops.h> #include <linux/sem.h> #include <linux/mutex.h> #include <linux/spinlock.h> #include <linux/usb/hcd.h> #include <linux/list.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/time.h> #include <linux/syscalls.h> #include <linux/trace_events.h> #include <linux/cred.h> #include <linux/compat.h> #include <linux/random.h> #include <linux/poll.h> /* 定义蓝牙设备的主设备号和次设备号 */ #define BT_MAJOR 200 #define BT_MINOR 0 /* 定义蓝牙设备名称 */ #define BT_DEV_NAME "bt_dev" /* 定义蓝牙设备结构体 */ struct bt_device { struct cdev cdev; struct semaphore sem; char *buffer; size_t size; }; /* 定义蓝牙设备指针 */ static struct bt_device *bt_dev; /* 打开蓝牙设备 */ static int bt_open(struct inode *inode, struct file *file) { struct bt_device *dev; /* 获取蓝牙设备指针 */ dev = container_of(inode->i_cdev, struct bt_device, cdev); /* 将设备指针存储到文件私有数据中 */ file->private_data = dev; /* 获取信号量 */ if (down_interruptible(&dev->sem)) return -ERESTARTSYS; /* 返回成功 */ return 0; } /* 释放蓝牙设备 */ static int bt_release(struct inode *inode, struct file *file) { struct bt_device *dev; /* 获取蓝牙设备指针 */ dev = container_of(inode->i_cdev, struct bt_device, cdev); /* 释放信号量 */ up(&dev->sem); /* 返回成功 */ return 0; } /* 读取蓝牙设备数据 */ static ssize_t bt_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct bt_device *dev; ssize_t retval = 0; /* 获取蓝牙设备指针 */ dev = file->private_data; /* 获取信号量 */ if (down_interruptible(&dev->sem)) return -ERESTARTSYS; /* 如果读取位置超过了数据长度,返回成功 */ if (*ppos >= dev->size) goto out; /* 如果读取长度超过了数据长度,将读取长度缩小到数据长度 */ if (count > dev->size - *ppos) count = dev->size - *ppos; /* 将设备数据复制到用户空间 */ if (copy_to_user(buf, dev->buffer + *ppos, count)) { retval = -EFAULT; goto out; } /* 更新读取位置 */ *ppos += count; retval = count; out: /* 释放信号量 */ up(&dev->sem); /* 返回读取长度 */ return retval; } /* 写入蓝牙设备数据 */ static ssize_t bt_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct bt_device *dev; ssize_t retval = -ENOMEM; /* 获取蓝牙设备指针 */ dev = file->private_data; /* 获取信号量 */ if (down_interruptible(&dev->sem)) return -ERESTARTSYS; /* 如果写入位置超过了数据长度,返回成功 */ if (*ppos >= dev->size) goto out; /* 如果写入长度超过了数据长度,将写入长度缩小到数据长度 */ if (count > dev->size - *ppos) count = dev->size - *ppos; /* 从用户空间复制数据到设备 */ if (copy_from_user(dev->buffer + *ppos, buf, count)) { retval = -EFAULT; goto out; } /* 更新写入位置 */ *ppos += count; retval = count; out: /* 释放信号量 */ up(&dev->sem); /* 返回写入长度 */ return retval; } /* 定义蓝牙设备操作结构体 */ static const struct file_operations bt_fops = { .owner = THIS_MODULE, .open = bt_open, .release = bt_release, .read = bt_read, .write = bt_write, }; /* 初始化蓝牙设备 */ static int __init bt_init(void) { dev_t devno; int err; /* 分配蓝牙设备结构体 */ bt_dev = kmalloc(sizeof(struct bt_device), GFP_KERNEL); if (!bt_dev) { err = -ENOMEM; goto out; } /* 初始化蓝牙设备结构体 */ memset(bt_dev, 0, sizeof(struct bt_device)); bt_dev->size = 4096; bt_dev->buffer = kmalloc(bt_dev->size, GFP_KERNEL); if (!bt_dev->buffer) { err = -ENOMEM; goto out_free_dev; } sema_init(&bt_dev->sem, 1); /* 分配设备号 */ devno = MKDEV(BT_MAJOR, BT_MINOR); err = register_chrdev_region(devno, 1, BT_DEV_NAME); if (err < 0) goto out_free_buffer; /* 初始化字符设备 */ cdev_init(&bt_dev->cdev, &bt_fops); bt_dev->cdev.owner = THIS_MODULE; /* 添加字符设备 */ err = cdev_add(&bt_dev->cdev, devno, 1); if (err) goto out_unregister; /* 返回成功 */ return 0; out_unregister: unregister_chrdev_region(devno, 1); out_free_buffer: kfree(bt_dev->buffer); out_free_dev: kfree(bt_dev); out: return err; } /* 卸载蓝牙设备 */ static void __exit bt_exit(void) { dev_t devno = MKDEV(BT_MAJOR, BT_MINOR); /* 删除字符设备 */ cdev_del(&bt_dev->cdev); /* 释放设备号 */ unregister_chrdev_region(devno, 1); /* 释放设备缓冲区 */ kfree(bt_dev->buffer); /* 释放设备结构体 */ kfree(bt_dev); } /* 定义模块初始化函数和卸载函数 */ module_init(bt_init); module_exit(bt_exit); /* 定义模块基本信息 */ MODULE_LICENSE("GPL"); MODULE_AUTHOR("Your Name"); MODULE_DESCRIPTION("A Simple Bluetooth Device Driver"); ```

Linux设备驱动中的并发控制

在Linux设备驱动中,由于多个进程或线程可能会同时访问设备,因此需要进行并发控制以确保设备的正确性和稳定性。以下是一些常用的Linux设备驱动中的并发控制方法: 1. 互斥锁(mutex):互斥锁是用于保护临界区的一种机制,当一个进程或线程进入临界区时,其他进程或线程必须等待其退出后才能进入。Linux内核提供了多种不同类型的互斥锁,如spinlock、semaphore等,开发者可以根据实际需求选择不同的锁类型。 2. 读写锁(rwlock):读写锁是一种特殊的互斥锁,它允许同时有多个读者访问共享资源,但只允许一个写者访问。读写锁可以提高并发性能,但也需要考虑读写锁的开销。 3. 自旋锁(spinlock):自旋锁是一种忙等待的锁,当一个进程或线程无法获取锁时,它会一直循环尝试获取锁,直到获取成功。自旋锁对于短时间的临界区保护非常有效,但长时间的自旋会浪费CPU资源。 4. 原子操作(atomic):原子操作是一种不可分割的操作,可以保证操作的完整性和一致性。在Linux设备驱动中,原子操作通常用于对共享变量的操作,如增减计数器等。 除了以上方法,还有一些高级的并发控制技术,如RCU、信号量(semaphore)等,它们可以根据具体的应用场景来选择使用。在开发Linux设备驱动时,需要根据实际情况选择合适的并发控制方法,并注意避免死锁和竞争条件等问题。
阅读全文

相关推荐

大家在看

recommend-type

10-银河麒麟高级服务器操作系统SPx升级到SP3版本操作指南

银河麒麟高级服务器操作系统 SPx升级到 SP3 版本操作指南-X86、ARM
recommend-type

Solidworks PDM Add-in Demo

官方范例入门Demo,调试成功
recommend-type

ArcGIS API for JavaScript 开发教程

非常完整的ArcGIS API for JavaScript开发教程,相信会对你的开发有帮助。
recommend-type

任务执行器-用于ad9834波形发生器(dds)的幅度控制电路

7.2 任务执行器 堆垛机 概述 堆垛机是一种特殊类型的运输机,专门设计用来与货架一起工作。堆垛机在两排货架间的巷 道中往复滑行,提取和存入临时实体。堆垛机可以充分展示伸叉、提升和行进动作。提升和 行进运动是同时进行的,但堆垛机完全停车后才会进行伸叉。 详细说明 堆垛机是任务执行器的一个子类。它通过沿着自身x轴方向行进的方式来实现偏移行进。它 一直行进直到与目的地位置正交,并抬升其载货平台。如果偏移行进是要执行装载或卸载任 务,那么一完成偏移,它就会执行用户定义的装载/卸载时间,将临时实体搬运到其载货平 台,或者从其载货平台搬运到目的位置。 默认情况下,堆垛机不与导航器相连。这意味着不执行行进任务。取尔代之,所有行进都采 用偏移行进的方式完成。 关于将临时实体搬运到堆垛机上的注释:对于一个装载任务,如果临时实体处于一个不断刷 新临时实体位置的实体中,如传送带时,堆垛机就不能将临时实体搬运到载货平台上。这种 情况下,如果想要显示将临时实体搬运到载货平台的过程,则需确保在模型树中,堆垛机排 在它要提取临时实体的那个实体的后面(在模型树中,堆垛机必须排在此实体下面)。 除了任务执行器所具有的标准属性外,堆垛机具有建模人员定义的载货平台提升速度和初始 提升位置。当堆垛机空闲或者没有执行偏移行进任务时,载货平台将回到此初始位置的高度。 332 美国Flexsim公司&北京创时能科技发展有限公司版权所有【010-82780244】
recommend-type

线切割报价软件,CAD线切割插件,飞狼线切割工具箱

飞狼线切割工具箱功能多多,是编程与报价人员必不可少的工具,下面列出一部分: 1.报价功能 2.生成边框 3.求外轮廓线 4.动态调整线型比例 5.批量倒圆角 6.点选串成多段线 7.断点连接 8.框选串成多段线 9.画齿轮 10.画链轮 11.生成3B程序 12.生成4B程序 13.生成G代码

最新推荐

recommend-type

Linux_USB驱动框架分析

Linux USB驱动框架是Linux内核中用于管理USB设备的核心组件,它允许操作系统与各种USB设备进行通信。在Linux中,设备驱动通常以结构体的形式表示,包含驱动程序所需的所有资源和函数指针,以实现对特定设备的操作。...
recommend-type

很全面的资料:Linux之信号量

在驱动程序中,使用内核信号量可以防止并发访问导致的问题,如上面的`globalvar_write`函数所示,先通过`down_interruptible`获取信号量,然后进行数据复制,最后用`up`释放信号量,确保了全局变量`global_var`的...
recommend-type

图像去雾基于基于Matlab界面的(多方法对比,PSNR,信息熵,GUI界面).rar

MATLAB设计
recommend-type

c语言打字母游戏源码.zip

c语言打字母游戏源码
recommend-type

c语言做的一个任务管理器.zip

c语言做的一个任务管理器
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。