用python写一个手写体数字识别的程序
时间: 2023-11-28 16:05:30 浏览: 164
好的,这个问题我可以回答。你可以使用机器学习中的深度学习技术,例如卷积神经网络(Convolutional Neural Network,CNN),来实现手写数字识别的程序。Python中有很多优秀的深度学习框架可以使用,例如Tensorflow、Keras和PyTorch等。你需要训练一个模型,然后使用这个模型来对手写数字图像进行分类识别。
相关问题
用 python 代码编写一个手写体数字识别的程序
A:以下是一个简单的手写数字识别程序,使用Keras和Tensorflow库训练了一个CNN模型:
```python
# 导入所需的库
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D
from keras.optimizers import Adam
# 加载MNIST数据集
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# 将图像从二维数组转换为四维数组
X_train = X_train.reshape(X_train.shape[0], 28, 28, 1)
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1)
# 将标签进行 one-hot 编码
y_train = np_utils.to_categorical(y_train, 10)
y_test = np_utils.to_categorical(y_test, 10)
# 构建模型
model = Sequential()
# 添加卷积层
model.add(Conv2D(32, (3, 3), input_shape=(28, 28, 1)))
model.add(Activation('relu'))
# 添加池化层
model.add(MaxPooling2D(pool_size=(2, 2)))
# 添加卷积层和池化层
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# 添加全连接层
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
# 添加输出层
model.add(Dense(10))
model.add(Activation('softmax'))
# 编译模型
model.compile(optimizer=Adam(), loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(X_train, y_train, batch_size=128, epochs=10, validation_data=(X_test, y_test))
# 评估模型
score = model.evaluate(X_test, y_test, verbose=0)
print('Test accuracy:', score[1])
```
运行程序后,可以使用自己的手写数字图像进行测试。
帮我接入飞桨写一个手写字体识别python程序
好的,我可以回答这个问题。以下是一个使用飞桨实现手写数字识别的 Python 程序:
```python
import paddle
import paddle.fluid as fluid
import numpy as np
# 定义网络结构
def convolutional_neural_network(img):
# 第一层卷积层
conv1 = fluid.layers.conv2d(input=img, num_filters=32, filter_size=5, stride=1, padding=2, act='relu')
# 第一层池化层
pool1 = fluid.layers.pool2d(input=conv1, pool_size=2, pool_type='max', pool_stride=2)
# 第二层卷积层
conv2 = fluid.layers.conv2d(input=pool1, num_filters=64, filter_size=5, stride=1, padding=2, act='relu')
# 第二层池化层
pool2 = fluid.layers.pool2d(input=conv2, pool_size=2, pool_type='max', pool_stride=2)
# 第三层卷积层
conv3 = fluid.layers.conv2d(input=pool2, num_filters=64, filter_size=5, stride=1, padding=2, act='relu')
# 第三层池化层
pool3 = fluid.layers.pool2d(input=conv3, pool_size=2, pool_type='max', pool_stride=2)
# 全连接层
fc = fluid.layers.fc(input=pool3, size=512, act='relu')
# 输出层
out = fluid.layers.fc(input=fc, size=10, act='softmax')
return out
# 定义输入数据
image = fluid.layers.data(name='image', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# 获取网络输出结果
predict = convolutional_neural_network(image)
# 定义损失函数和优化器
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost)
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=.001)
opts = optimizer.minimize(avg_cost)
# 定义训练程序
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
# 定义数据读取器
train_reader = paddle.batch(paddle.reader.shuffle(paddle.dataset.mnist.train(), buf_size=500), batch_size=128)
test_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128)
# 开始训练
for pass_id in range(10):
# 训练
for batch_id, data in enumerate(train_reader()):
train_cost, train_acc = exe.run(program=fluid.default_main_program(),
feed={'image': np.array([x[] for x in data]).astype('float32'),
'label': np.array([x[1] for x in data]).astype('int64')},
fetch_list=[avg_cost, predict])
if batch_id % 100 == :
print("Pass %d, Batch %d, Cost %f, Acc %f" % (pass_id, batch_id, train_cost[], train_acc[]))
# 测试
test_accs = []
test_costs = []
for batch_id, data in enumerate(test_reader()):
test_cost, test_acc = exe.run(program=fluid.default_main_program(),
feed={'image': np.array([x[] for x in data]).astype('float32'),
'label': np.array([x[1] for x in data]).astype('int64')},
fetch_list=[avg_cost, predict])
test_accs.append(test_acc[])
test_costs.append(test_cost[])
test_cost = (sum(test_costs) / len(test_costs))
test_acc = (sum(test_accs) / len(test_accs))
print("Test: Cost %f, Acc %f" % (test_cost, test_acc))
```
这个程序使用了飞桨框架,实现了一个卷积神经网络,用于手写数字识别。训练数据使用了 MNIST 数据集,训练过程中会输出训练和测试的损失和准确率。
阅读全文