导航函数matlab代码
时间: 2023-10-18 10:27:42 浏览: 135
matlab写的导航算法源代码.zip
以下是使用曼哈顿距离作为导航函数的Matlab代码示例:
```matlab
function [path, cost] = Astar(start, goal, obstacles)
% 输入参数:
% start - 起点坐标
% goal - 终点坐标
% obstacles - 障碍物二维数组,1表示障碍物,0表示可通过
% 输出参数:
% path - 路径数组,每个元素为一个坐标点
% cost - 路径代价
% 计算曼哈顿距离
h = @(x,y) abs(x-goal(1)) + abs(y-goal(2));
% 初始化起点和终点节点
start_node = struct('pos', start, 'g', 0, 'h', h(start(1), start(2)), 'parent', []);
goal_node = struct('pos', goal, 'g', Inf, 'h', 0, 'parent', []);
% 初始化open和closed列表
open_list = [start_node];
closed_list = [];
while ~isempty(open_list)
% 从open列表中找到f值最小的节点
[min_f, min_idx] = min([open_list.g] + [open_list.h]);
current_node = open_list(min_idx);
% 如果当前节点是终点,则返回路径
if isequal(current_node.pos, goal_node.pos)
path = backtrack_path(current_node);
cost = current_node.g;
return;
end
% 将当前节点从open列表中移除,并添加到closed列表中
open_list(min_idx) = [];
closed_list(end+1) = current_node;
% 扩展当前节点的邻居节点
neighbors = get_neighbors(current_node, obstacles);
for i = 1:length(neighbors)
neighbor = neighbors(i);
% 如果邻居节点已经在closed列表中,则跳过
if ismember(neighbor, closed_list)
continue;
end
% 计算邻居节点的g值
new_g = current_node.g + 1;
% 如果邻居节点已经在open列表中,则更新g值和parent
open_idx = find(ismember(open_list, neighbor));
if ~isempty(open_idx)
if new_g < open_list(open_idx).g
open_list(open_idx).g = new_g;
open_list(open_idx).parent = current_node;
end
% 否则添加邻居节点到open列表中
else
neighbor.g = new_g;
neighbor.h = h(neighbor.pos(1), neighbor.pos(2));
neighbor.parent = current_node;
open_list(end+1) = neighbor;
end
end
end
% 如果open列表已经空了,但是仍然没有找到路径,则返回空
path = [];
cost = Inf;
end
% 获取当前节点的邻居节点
function neighbors = get_neighbors(node, obstacles)
x = node.pos(1);
y = node.pos(2);
neighbors = [];
if x > 1 && ~obstacles(x-1, y)
neighbors(end+1) = struct('pos', [x-1 y], 'g', Inf, 'h', 0, 'parent', []);
end
if x < size(obstacles, 1) && ~obstacles(x+1, y)
neighbors(end+1) = struct('pos', [x+1 y], 'g', Inf, 'h', 0, 'parent', []);
end
if y > 1 && ~obstacles(x, y-1)
neighbors(end+1) = struct('pos', [x y-1], 'g', Inf, 'h', 0, 'parent', []);
end
if y < size(obstacles, 2) && ~obstacles(x, y+1)
neighbors(end+1) = struct('pos', [x y+1], 'g', Inf, 'h', 0, 'parent', []);
end
end
% 回溯路径
function path = backtrack_path(node)
path = [node.pos];
while ~isempty(node.parent)
node = node.parent;
path = [node.pos; path];
end
end
```
上述代码实现了一个基于A*算法的路径规划器,其中使用曼哈顿距离作为导航函数。该代码可以在二维障碍物地图上进行路径规划,返回一条从起点到终点的最短路径。
阅读全文