举例一个使用tf.keras.layers模块来构建ResNet模型的例子
时间: 2024-04-12 16:29:31 浏览: 116
ResNet的Keras实现
下面是一个使用tf.keras.layers模块来构建ResNet模型的例子:
```python
import tensorflow as tf
def identity_block(input_tensor, kernel_size, filters, stage, block):
filters1, filters2, filters3 = filters
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = tf.keras.layers.Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor)
x = tf.keras.layers.BatchNormalization(name=bn_name_base + '2a')(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.Conv2D(filters2, kernel_size, padding='same', name=conv_name_base + '2b')(x)
x = tf.keras.layers.BatchNormalization(name=bn_name_base + '2b')(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)
x = tf.keras.layers.BatchNormalization(name=bn_name_base + '2c')(x)
x = tf.keras.layers.add([x, input_tensor])
x = tf.keras.layers.Activation('relu')(x)
return x
def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):
filters1, filters2, filters3 = filters
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = tf.keras.layers.Conv2
阅读全文