给出resnet152结构图
时间: 2023-07-14 21:11:58 浏览: 283
以下是ResNet-152的结构图:
![ResNet-152 Architecture](https://miro.medium.com/max/3840/1*8ixTe1VHLsmKB3AquWdxpQ.png)
ResNet-152是一个深度为152层的卷积神经网络,其中包含多个残差块和全局平均池化层。每个残差块由两个卷积层和一个跳跃连接组成,跳跃连接使得网络可以更容易地学习恒等映射,从而避免了梯度消失问题。全局平均池化层用于将最后一个残差块的输出转换为一个固定大小的向量,该向量可以用于分类、回归或其他任务。
相关问题
resnet152流程图
抱歉,我无法提供图片或流程图。但是,ResNet-152的网络结构可以通过引用\[1\]中提供的信息来理解。ResNet-152是一种深度卷积神经网络模型,它采用了残差结构,使得深度模型的训练更加容易。它的参数量达到了60MB,相对较大。ResNet-152的网络结构图可以在引用\[1\]中找到。
#### 引用[.reference_title]
- *1* *3* [一文详解R-CNN、Fast R-CNN、Faster](https://blog.csdn.net/hallobike/article/details/116352963)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [ResNet(残差)网络](https://blog.csdn.net/weixin_50988214/article/details/109494509)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
resnet152模型结构图
根据提供的引用内容,可以得知ResNet152是ResNet的一个变种,其网络结构比ResNet34更加深层。由于ResNet网络结构比传统的卷积神经网络更加深层,因此在训练过程中会出现梯度消失或梯度爆炸的问题,导致网络无法收敛。为了解决这个问题,ResNet引入了残差模块,使得网络可以更加深层,同时保证了梯度的传递。ResNet152的网络结构如下所示:
```
ResNet152(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu3): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu3): ReLU(inplace=True)
)
...
(49): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu3): ReLU(inplace=True)
)
)
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=2048, out_features=1000, bias=True)
)
```
阅读全文