x = torch.cat(x, dim=0) # concatenate the list of 3 tensors along the batch dimension RuntimeError: zero-dimensional tensor (at position 0) cannot be concatenated
时间: 2023-12-05 21:04:11 浏览: 195
这个错误通常是因为你试图将一个零维张量与其他张量进行拼接,而 PyTorch 的 `torch.cat()` 函数只能拼接具有相同形状的张量。请检查你的张量列表中是否包含了一个零维张量,并确保所有张量的形状都相同。如果你需要在拼接之前将零维张量转换为一个具有正确形状的张量,你可以使用 `torch.unsqueeze()` 函数在指定维度上添加一个大小为1的维度。例如,如果你想将一个形状为 `(3,)` 的零维张量 `z` 拼接到一个形状为 `(2, 3)` 的二维张量 `x` 中,你可以使用以下代码:
```
z = torch.tensor([1, 2, 3])
z = torch.unsqueeze(z, 0) # add a dimension of size 1 at dim 0
x = torch.tensor([[4, 5, 6], [7, 8, 9]])
x = torch.cat([x, z], dim=0)
```
相关问题
x = torch.cat(x, dim=0) # concatenate the list of 3 tensors along the batch dimension TypeError: cat() received an invalid combination of arguments - got (Tensor, dim=int), but expected one of: * (tuple of Tensors tensors, int dim, *, Tensor out) * (tuple of Tensors tensors, name dim, *, Tensor out)
这个错误提示表明你传递给`torch.cat()`函数的第一个参数`x`是一个单个的Tensor,而不是一个包含多个Tensors的元组。因此,`dim`参数需要被视为第二个位置参数,而不是第一个。
要解决这个问题,你需要将`x`从单个Tensor转换为一个元组,其中每个元素都是Tensor。你可以使用Python的内置`tuple()`函数来实现这一点:
```
x = tuple(x)
x = torch.cat(x, dim=0)
```
这将把`x`转换为一个包含3个Tensor的元组,并将它们沿着batch维度拼接。
concat2 = torch.cat([convt1,conv4],dim=1)
This line of code uses the PyTorch function `torch.cat()` to concatenate two tensors along dimension 1. The tensors being concatenated are `convt1` and `conv4`.
The resulting tensor, `concat2`, will have the same shape as `convt1` and `conv4`, except that their sizes along dimension 1 will be added together.
For example, if `convt1` has shape `(3, 64, 32, 32)` and `conv4` has shape `(3, 128, 32, 32)`, then `concat2` will have shape `(3, 192, 32, 32)`.
阅读全文