pytorch图像识别(基于识别验证码),读取数据集图片以及使用神经网络进行训练代码
时间: 2024-01-30 20:04:09 浏览: 136
利用pytorch实现图像分类的一个完整的代码,训练,预测,TTA,模型融合,模型部署,cnn提取特征,svm或者随机森林等进行
好的,以下是一个基于 PyTorch 的图像识别(验证码识别)的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, datasets
# 定义数据集类
class CaptchaDataset(Dataset):
def __init__(self, data_path):
self.data = datasets.ImageFolder(data_path, transform=transforms.ToTensor())
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
img, label = self.data[idx]
return img, label
# 定义神经网络模型
class CaptchaModel(nn.Module):
def __init__(self):
super(CaptchaModel, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(128 * 8 * 8, 1024)
self.fc2 = nn.Linear(1024, 10)
def forward(self, x):
x = self.pool(nn.functional.relu(self.conv1(x)))
x = self.pool(nn.functional.relu(self.conv2(x)))
x = self.pool(nn.functional.relu(self.conv3(x)))
x = x.view(x.size(0), -1)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
# 定义训练函数
def train(model, train_loader, optimizer, criterion, device):
model.train()
train_loss = 0
train_acc = 0
for inputs, labels in train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
train_acc += torch.sum(preds == labels.data)
train_loss = train_loss / len(train_loader.dataset)
train_acc = train_acc.double() / len(train_loader.dataset)
return train_loss, train_acc
# 定义测试函数
def test(model, test_loader, criterion, device):
model.eval()
test_loss = 0
test_acc = 0
with torch.no_grad():
for inputs, labels in test_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
test_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
test_acc += torch.sum(preds == labels.data)
test_loss = test_loss / len(test_loader.dataset)
test_acc = test_acc.double() / len(test_loader.dataset)
return test_loss, test_acc
# 设置参数
data_path = 'path/to/data'
batch_size = 32
learning_rate = 0.001
num_epochs = 10
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# 加载数据集
train_data = CaptchaDataset(data_path + '/train')
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_data = CaptchaDataset(data_path + '/test')
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False)
# 初始化模型和优化器
model = CaptchaModel().to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss()
# 训练和测试模型
for epoch in range(num_epochs):
train_loss, train_acc = train(model, train_loader, optimizer, criterion, device)
test_loss, test_acc = test(model, test_loader, criterion, device)
print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'.format(epoch+1, num_epochs, train_loss, train_acc, test_loss, test_acc))
```
在这个示例代码中,我们首先定义了一个 `CaptchaDataset` 类来加载数据集。然后定义了一个 `CaptchaModel` 类来构建神经网络模型。接着定义了 `train` 和 `test` 函数来训练和测试模型。最后设置了一些参数,加载数据集,初始化模型和优化器,并开始训练和测试模型。
需要注意的是,这个示例代码中的神经网络模型只是一个简单的卷积神经网络,需要根据具体问题来调整模型结构和参数。另外,在训练过程中可能会遇到过拟合等问题,需要进行模型调整和优化。
阅读全文