vmd-lstm预测模型
时间: 2023-08-09 10:12:03 浏览: 247
VMD-LSTM是一种结合了VMD(Variational Mode Decomposition)和LSTM(Long Short-Term Memory)的预测模型。VMD是一种信号分解方法,可以将原始信号分解为多个本征模态函数(IMF)。而LSTM是一种递归神经网络,擅长处理序列数据。
VMD-LSTM模型的主要思想是先使用VMD将原始信号分解为多个IMF,然后将每个IMF作为输入序列,通过LSTM进行建模和预测。每个IMF都可以看作是不同频率的成分,LSTM可以捕捉到序列中的长期依赖关系,从而更好地预测未来的值。
通过将VMD和LSTM结合,VMD-LSTM模型可以更准确地处理非线性、非平稳的时间序列数据,并具有较强的预测性能。这种模型在信号处理、时间序列预测等领域有广泛的应用。
相关问题
vmd-lstm预测模型代码
以下是一个简单的vmd-lstm预测模型的Python代码示例:
```python
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, LSTM
# 定义VMD函数
def vmd(x):
# 在此处添加VMD代码
return x
# 创建训练数据
X_train = np.random.rand(1000, 10)
y_train = np.random.rand(1000, 1)
# VMD分解
X_train_vmd = vmd(X_train)
# 创建LSTM模型
model = Sequential()
model.add(LSTM(50, input_shape=(10,1)))
model.add(Dense(1))
# 编译模型
model.compile(loss='mean_squared_error', optimizer='adam')
# 拟合模型
model.fit(X_train_vmd, y_train, epochs=10, batch_size=10)
# 预测
X_test = np.random.rand(1, 10)
X_test_vmd = vmd(X_test)
y_pred = model.predict(X_test_vmd)
print(y_pred)
```
在这个示例中,我们首先定义了一个VMD函数,用于对输入数据进行VMD分解。然后,我们创建了一些随机训练数据,并对其进行VMD分解。接下来,我们创建了一个LSTM模型,将VMD分解后的数据作为输入。我们将模型编译为使用均方误差损失函数和Adam优化器进行优化的模型。最后,我们拟合模型并使用VMD分解后的数据进行预测。
vmd-lstm预测模型代码matlab
以下是一个基于 MATLAB 的 VMD-LSTM 预测模型的代码示例:
```matlab
% 加载数据
data = load('data.mat');
data = data.data;
% 划分数据集
train_ratio = 0.8;
train_size = round(train_ratio * size(data, 1));
train_data = data(1:train_size, :);
test_data = data(train_size+1:end, :);
% VMD 分解
num_modes = 8;
alpha = 2000;
tau = 0;
tol = 1e-7;
maxiter = 2000;
[V, W, ~] = VMD(train_data', alpha, tau, tol, maxiter, num_modes);
% LSTM 模型训练
input_size = num_modes;
output_size = 1;
hidden_size = 32;
num_layers = 2;
learning_rate = 0.001;
num_epochs = 100;
batch_size = 64;
train_loader = prepare_data(train_data, batch_size);
lstm_model = train_lstm(input_size, hidden_size, num_layers, output_size, learning_rate, num_epochs, train_loader);
% LSTM 模型预测
test_loader = prepare_data(test_data, 1);
lstm_predictions = predict_lstm(lstm_model, test_loader);
% VMD 重构
reconstructed_data = W * lstm_predictions;
% 可视化结果
figure;
plot(data, 'LineWidth', 2);
hold on;
plot(train_size+1:size(data, 1), reconstructed_data, 'LineWidth', 2);
legend('原始数据', '预测数据');
% 定义 VMD 函数
function [V, U, omega] = VMD(X, alpha, tau, tol, maxiter, num_modes)
N = length(X);
omega = zeros(N, num_modes);
for ii = 1:num_modes
omega(:, ii) = omega_init(N, alpha);
end
U = zeros(N, num_modes);
V = X;
K = 1;
while K <= maxiter
for ii = 1:num_modes
[U(:, ii), ~] = FISTA(V, omega(:, ii), tau, tol);
end
u_hat = fft(U, [], 1);
for ii = 1:num_modes
omega(:, ii) = weight_median(u_hat(:, ii), alpha);
end
V_old = V;
V = X - sum(U, 2);
if norm(V(:) - V_old(:)) / norm(X(:)) < tol
break;
end
K = K + 1;
end
end
% 定义 FISTA 函数
function [x, obj] = FISTA(y, lambda, tau, tol)
L = norm(y, 2)^2;
x = y;
t = 1;
t_old = 1;
for ii = 1:100
x_old = x;
grad = gradient(x, lambda, tau);
x = soft_threshold(x - (1/L) * grad, 1/L);
t_old = t;
t = (1 + sqrt(1 + 4*t^2))/2;
x = x + ((t_old - 1)/t) * (x - x_old);
obj = objective(x, y, lambda, tau);
if norm(x(:) - x_old(:)) / norm(x_old(:)) < tol
break;
end
end
end
% 定义梯度和目标函数
function grad = gradient(x, lambda, tau)
grad = -fft(kernel(x)) + lambda .* fft(weight(x)) + tau .* fft(x);
end
function obj = objective(x, y, lambda, tau)
obj = norm(kernel(x)*x - y, 2)^2/2 + lambda .* norm(weight(x), 1) + tau .* norm(x, 1);
end
% 定义阈值函数和核函数
function y = soft_threshold(x, lambda)
y = sign(x) .* max(abs(x) - lambda, 0);
end
function K = kernel(x)
N = length(x);
K = zeros(N, N);
for ii = 1:N
for jj = 1:N
K(ii, jj) = abs(ii - jj);
end
end
K = exp(-K.^2);
end
% 定义权重函数和权重中位数函数
function w = weight(x)
N = length(x);
w = zeros(N, 1);
for ii = 1:N
w(ii) = min(ii-1, N-ii);
end
w = w/max(w);
end
function wm = weight_median(x, alpha)
N = length(x);
w = weight(x);
wm = zeros(N, 1);
for ii = 1:N
indices = max(ii-alpha, 1):min(ii+alpha, N);
wm(ii) = median(w(indices));
end
end
% 定义 LSTM 模型相关函数
function loader = prepare_data(data, batch_size)
num_samples = size(data, 1);
batches = floor(num_samples / batch_size);
X = data(1:batches*batch_size, :);
X = reshape(X, [batch_size, batches, size(data, 2)]);
loader = struct;
loader.X = X;
loader.num_samples = num_samples;
loader.batch_size = batch_size;
loader.batches = batches;
end
function model = train_lstm(input_size, hidden_size, num_layers, output_size, learning_rate, num_epochs, loader)
lstm_layers = [];
for ii = 1:num_layers
lstm_layers = [lstm_layers, sequenceInputLayer(input_size)];
lstm_layers = [lstm_layers, lstmLayer(hidden_size, 'OutputMode', 'last')];
end
lstm_layers = [lstm_layers, fullyConnectedLayer(output_size)];
lstm_layers = [lstm_layers, regressionLayer];
options = trainingOptions('adam', ...
'MaxEpochs', num_epochs, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropPeriod', 50, ...
'LearnRateDropFactor', 0.2, ...
'InitialLearnRate', learning_rate, ...
'MiniBatchSize', loader.batch_size);
X = loader.X(:, 1:end-1, :);
Y = loader.X(:, 2:end, :);
model = trainNetwork(X, Y, lstm_layers, options);
end
function predictions = predict_lstm(model, loader)
predictions = zeros(loader.num_samples - loader.batch_size, 1);
for ii = 1:loader.batches
X_batch = loader.X(:, ii, :);
Y_batch = model.predict(X_batch);
predictions((ii-1)*loader.batch_size+1:ii*loader.batch_size) = Y_batch(1:end-1);
end
end
```
需要注意的是,以上代码仅为示例,实际使用时需要根据具体需求进行修改和调整。此外,代码中使用了 VMD 和 FISTA 算法,需要提前安装对应的 MATLAB 工具箱。
阅读全文