使用MindSpore实现ResNet-34
时间: 2023-07-11 20:20:43 浏览: 125
基于MindSpore实现的ResNet-50毒蘑菇识别python源码+运行截图
好的,下面是使用MindSpore实现ResNet-34的步骤:
1. 导入必要的库
```python
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
```
2. 定义基本的卷积块
```python
class ConvBlock(nn.Cell):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
super(ConvBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, has_bias=False)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU()
def construct(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
```
3. 定义ResNet-34的基本块
```python
class BasicBlock(nn.Cell):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = ConvBlock(in_channels, out_channels, kernel_size=3, stride=stride, padding=1)
self.conv2 = ConvBlock(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.downsample = downsample
self.stride = stride
def construct(self, x):
identity = x
out = self.conv1(x)
out = self.conv2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = nn.ReLU()(out)
return out
```
4. 定义ResNet-34的主体部分
```python
class ResNet34(nn.Cell):
def __init__(self, num_classes=1000):
super(ResNet34, self).__init__()
self.in_channels = 64
self.conv1 = ConvBlock(3, 64, kernel_size=7, stride=2, padding=3)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(BasicBlock, 64, 3, stride=1)
self.layer2 = self._make_layer(BasicBlock, 128, 4, stride=2)
self.layer3 = self._make_layer(BasicBlock, 256, 6, stride=2)
self.layer4 = self._make_layer(BasicBlock, 512, 3, stride=2)
self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1)
self.fc = nn.Dense(512 * BasicBlock.expansion, num_classes)
def _make_layer(self, block, out_channels, num_blocks, stride):
downsample = None
if stride != 1 or self.in_channels != out_channels * block.expansion:
downsample = nn.SequentialCell([
nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, has_bias=False),
nn.BatchNorm2d(out_channels * block.expansion)
])
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels * block.expansion
for i in range(1, num_blocks):
layers.append(block(self.in_channels, out_channels))
return nn.SequentialCell(layers)
def construct(self, x):
x = self.conv1(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = P.Reshape()(x, (x.shape[0], -1))
x = self.fc(x)
return x
```
5. 加载数据和训练模型
这里的数据加载和训练模型的部分可以根据具体的数据集和训练需求进行编写。
以上就是使用MindSpore实现ResNet-34的基本步骤,你可以根据自己的需要进行修改和调整。
阅读全文