U_1 = torch.fft.ifft2(S_0 * self.phi.unsqueeze(0).unsqueeze(0), dim=[-2, -1]).real请解释这段代码

时间: 2024-03-17 13:39:58 浏览: 22
这段代码是一个类中的一个函数的一部分,其中`self.phi`是该类的一个属性。下面对代码进行逐步解释: ```python # S_0是一个二维张量,self.phi是一个一维张量 # 将self.phi扩展为一个二维张量,并将S_0与其相乘 temp = S_0 * self.phi.unsqueeze(0).unsqueeze(0) # 在倒数第二和倒数第一维度上执行二维逆傅里叶变换 # dim=[-2, -1]表示在倒数第二和倒数第一维度上执行IFFT变换 temp_ifft = torch.fft.ifft2(temp, dim=[-2, -1]) # 取出实部 U_1 = temp_ifft.real ``` 根据代码,`S_0`是一个二维张量,而`self.phi`是一个一维张量。为了让它们能够相乘,需要将`self.phi`扩展为一个二维张量。这里使用了`unsqueeze()`函数在第0维和第1维上分别添加了一个维度,使其变为一个二维张量。然后将`S_0`与`self.phi`相乘,得到一个新的二维张量`temp`。 接下来,使用`torch.fft.ifft2()`函数在倒数第二和倒数第一维度上执行二维逆傅里叶变换(IFFT),得到一个新的二维张量`temp_ifft`。最后,使用`.real`方法取出`temp_ifft`的实部,得到二维张量`U_1`。
相关问题

这段代码有什么错误def forward(self,x): num_nodes = x.size(1) # sub_graph size batch_size = x.size(0) W = torch.cat([self.W] * batch_size, dim=0) representation = torch.matmul(x, W) r_sum = torch.sum(representation, dim=-1, keepdim=False) b = torch.zeros([batch_size, num_nodes]) b = Variable(b) one = torch.ones_like(r_sum) zero = torch.zeros_like(r_sum) label = torch.clone(r_sum) label = torch.where(label == 0, one, zero) b.data.masked_fill_(label.bool(), -float('inf')) num_iterations = 3 for i in range(num_iterations): c = torch.nn.functional.softmax(b, dim=-1) weight_coeff = c.unsqueeze(dim=1) representation_global = torch.matmul(weight_coeff, representation) representation_global_all = torch.cat([representation_global] * num_nodes, dim=1) representation_similarity = torch.nn.functional.cosine_similarity(representation, representation_global_all, dim=-1) representation_similarity.data.masked_fill_(label.bool(), -float('inf')) b = representation_similarity return representation_global.squeeze(dim=1)

这段代码中存在一个错误。在for循环中,代码更新了变量b,但是在更新后没有再次进行softmax操作,导致后续的计算结果不正确。因此,需要在for循环中,在更新b后再次进行softmax操作,如下所示: ``` for i in range(num_iterations): c = torch.nn.functional.softmax(b, dim=-1) weight_coeff = c.unsqueeze(dim=1) representation_global = torch.matmul(weight_coeff, representation) representation_global_all = torch.cat([representation_global] * num_nodes, dim=1) representation_similarity = torch.nn.functional.cosine_similarity(representation, representation_global_all, dim=-1) representation_similarity.data.masked_fill_(label.bool(), -float('inf')) b = torch.nn.functional.softmax(representation_similarity, dim=-1) # 进行softmax操作 ``` 这样修改后,该段代码的功能应该能够正常运行。

def forward(self, input_question, input_answer): input_question.requires_grad = True question_embed = torch.nn.Parameter(self.embedding(input_question), requires_grad=True) answer_embed = torch.nn.Parameter(self.embedding(input_answer), requires_grad=True) _, question_hidden = self.encoder(question_embed) answer_outputs, _ = self.encoder(answer_embed, question_hidden) attention_weights = self.attention(answer_outputs).squeeze(dim=-1) attention_weights = torch.softmax(attention_weights, dim=1) context_vector = torch.bmm(attention_weights.unsqueeze(dim=1), answer_outputs).squeeze(dim=1) logits = self.decoder(context_vector) return logits

在你的代码中,你已经正确地将`input_question`和`input_answer`设置为需要梯度计算的张量。 然而,在使用`torch.nn.Parameter`时,你不需要再次设置`requires_grad=True`,因为`torch.nn.Parameter`默认会将其设置为True。 另外,在计算attention权重时,你可以使用`torch.softmax`函数来对attention权重进行归一化,而不是使用`torch.sigmoid`。softmax函数将确保所有权重的总和为1。 对于logits的计算,没有发现明显的问题。 总的来说,修改后的代码如下所示: ```python def forward(self, input_question, input_answer): question_embed = self.embedding(input_question) answer_embed = self.embedding(input_answer) _, question_hidden = self.encoder(question_embed) answer_outputs, _ = self.encoder(answer_embed, question_hidden) attention_weights = self.attention(answer_outputs).squeeze(dim=-1) attention_weights = torch.softmax(attention_weights, dim=1) context_vector = torch.bmm(attention_weights.unsqueeze(dim=1), answer_outputs).squeeze(dim=1) logits = self.decoder(context_vector) return logits ``` 请确保在使用`loss.backward()`之前,所有需要梯度计算的张量都设置了`requires_grad=True`。如果仍然遇到问题,请检查其他部分的代码是否正确设置了梯度属性。

相关推荐

帮我给每一行代码添加注释 class DeepKalmanFilter(nn.Module): def __init__(self, config): super(DeepKalmanFilter, self).__init__() self.emitter = Emitter(config.z_dim, config.emit_hidden_dim, config.obs_dim) self.transition = Transition(config.z_dim, config.trans_hidden_dim) self.posterior = Posterior( config.z_dim, config.post_hidden_dim, config.obs_dim ) self.z_q_0 = nn.Parameter(torch.zeros(config.z_dim)) self.emit_log_sigma = nn.Parameter(config.emit_log_sigma * torch.ones(config.obs_dim)) self.config = config @staticmethod def reparametrization(mu, sig): return mu + torch.randn_like(sig) * sig @staticmethod def kl_div(mu0, sig0, mu1, sig1): return -0.5 * torch.sum(1 - 2 * sig1.log() + 2 * sig0.log() - (mu1 - mu0).pow(2) / sig1.pow(2) - (sig0 / sig1).pow(2)) def loss(self, obs): time_step = obs.size(1) batch_size = obs.size(0) overshoot_len = self.config.overshooting kl = torch.Tensor([0]).to(self.config.device) reconstruction = torch.Tensor([0]).to(self.config.device) emit_sig = self.emit_log_sigma.exp() for s in range(self.config.sampling_num): z_q_t = self.z_q_0.expand((batch_size, self.config.z_dim)) for t in range(time_step): trans_loc, trans_sig = self.transition(z_q_t) post_loc, post_sig = self.posterior(trans_loc, trans_sig, obs[:, t]) z_q_t = self.reparametrization(post_loc, post_sig) emit_loc = self.emitter(z_q_t) reconstruction += ((emit_loc - obs[:, t]).pow(2).sum(dim=0) / 2 / emit_sig + self.emit_log_sigma * batch_size / 2).sum() if t > 0: over_loc, over_sig = self.transition(overshooting[:overshoot_len - 1]) over_loc = torch.cat([trans_loc.unsqueeze(0), over_loc], dim=0) over_sig = torch.cat([trans_sig.unsqueeze(0), over_sig], dim=0) else: over_loc = trans_loc.unsqueeze(0) over_sig = trans_sig.unsqueeze(0) overshooting = self.reparametrization(over_loc, over_sig) kl = kl + self.kl_div(post_loc.expand_as(over_loc), post_sig.expand_as(over_sig), over_loc, over_sig) / min(t + 1, self.config.overshooting) reconstruction = reconstruction / self.config.sampling_num kl = kl / self.config.sampling_num return reconstruction, kl

最新推荐

recommend-type

torch-1.7.1+cu110-cp37-cp37m-linux_x86_64.whl离线安装包linux系统x86_64

torch-1.7.1+cu110-cp37-cp37m-linux_x86_64.whl torchvision-0.8.2+cu110-cp37-cp37m-linux_x86_64.whl 由于超过1G无法上传,给的是百度云链接!!!!!需自行下载
recommend-type

基于Java实现的明日知道系统.zip

基于Java实现的明日知道系统
recommend-type

NX二次开发uc1653 函数介绍

NX二次开发uc1653 函数介绍,Ufun提供了一系列丰富的 API 函数,可以帮助用户实现自动化、定制化和扩展 NX 软件的功能。无论您是从事机械设计、制造、模具设计、逆向工程、CAE 分析等领域的专业人士,还是希望提高工作效率的普通用户,NX 二次开发 Ufun 都可以帮助您实现更高效的工作流程。函数覆盖了 NX 软件的各个方面,包括但不限于建模、装配、制图、编程、仿真等。这些 API 函数可以帮助用户轻松地实现自动化、定制化和扩展 NX 软件的功能。例如,用户可以通过 Ufun 编写脚本,自动化完成重复性的设计任务,提高设计效率;或者开发定制化的功能,满足特定的业务需求。语法简单易懂,易于学习和使用。用户可以快速上手并开发出符合自己需求的 NX 功能。本资源内容 提供了丰富的中英文帮助文档,可以帮助用户快速了解和使用 Ufun 的功能。用户可以通过资源中的提示,学习如何使用 Ufun 的 API 函数,以及如何实现特定的功能。
recommend-type

别墅图纸编号D020-三层-10.00&12.00米- 效果图.dwg

别墅图纸编号D020-三层-10.00&12.00米- 效果图.dwg
recommend-type

操作系统实验指导书(2024)单面打印(1).pdf

操作系统实验指导书(2024)单面打印(1).pdf
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。