把这段代码里的location_embedding_dim去掉class my_GAT(torch.nn.Module): def __init__(self, in_channels, out_channels, n_heads, location_embedding_dim, filters_1, filters_2, dropout): super(my_GAT, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.n_heads = n_heads location_embedding_dim = 0 self.filters_1 = filters_1 self.filters_2 = filters_2 self.dropout = dropout self.location_embedding_dim = location_embedding_dim self.setup_layers() def setup_layers(self): self.GAT_1 = GATConv(in_channels=self.in_channels,out_channels=self.filters_1, heads=self.n_heads, dropout=0.1) self.GAT_2 = GATConv(in_channels=self.filters_1 * self.n_heads + self.location_embedding_dim, out_channels=self.out_channels, heads=self.n_heads, dropout=0.1, concat=False) def forward(self, edge_indices, features, location_embedding): features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_1(features, edge_indices) features = torch.nn.functional.relu(features) features = torch.nn.functional.dropout(features, p=self.dropout, training=self.training) features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_2(features, edge_indices) return features
时间: 2024-03-14 18:47:19 浏览: 102
这段代码里的location_embedding_dim是一个参数,它表示位置嵌入的维度。如果你想去掉它,可以把它的值设为0,然后在构造函数中把self.location_embedding_dim也设为0即可。具体来说,修改后的代码如下:
```
class my_GAT(torch.nn.Module):
def __init__(self, in_channels, out_channels, n_heads, filters_1, filters_2, dropout):
super(my_GAT, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.n_heads = n_heads
self.filters_1 = filters_1
self.filters_2 = filters_2
self.dropout = dropout
self.location_embedding_dim = 0
self.setup_layers()
def setup_layers(self):
self.GAT_1 = GATConv(in_channels=self.in_channels,out_channels=self.filters_1, heads=self.n_heads, dropout=0.1)
self.GAT_2 = GATConv(in_channels=self.filters_1 * self.n_heads, out_channels=self.out_channels, heads=self.n_heads, dropout=0.1, concat=False)
def forward(self, edge_indices, features, location_embedding):
features = self.GAT_1(features, edge_indices)
features = torch.nn.functional.relu(features)
features = torch.nn.functional.dropout(features, p=self.dropout, training=self.training)
features = self.GAT_2(features, edge_indices)
return features
```
阅读全文