class Positional_GAT(torch.nn.Module): def __init__(self, in_channels, out_channels, n_heads, location_embedding_dim, filters_1, filters_2, dropout): super(Positional_GAT, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.n_heads = n_heads self.filters_1 = filters_1 self.filters_2 = filters_2 self.dropout = dropout self.location_embedding_dim = location_embedding_dim self.setup_layers() def setup_layers(self): self.GAT_1 = GATConv(in_channels=self.in_channels,out_channels=self.filters_1, heads=self.n_heads, dropout=0.1) self.GAT_2 = GATConv(in_channels=self.filters_1 * self.n_heads + self.location_embedding_dim, out_channels=self.out_channels, heads=self.n_heads, dropout=0.1, concat=False) def forward(self, edge_indices, features, location_embedding): features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_1(features, edge_indices) features = torch.nn.functional.relu(features) features = torch.nn.functional.dropout(features, p=self.dropout, training=self.training) features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_2(features, edge_indices) return features
时间: 2023-12-26 13:05:27 浏览: 194
jou_hk37.zip_After Method_dsp
这段代码实现了一个名为Positional_GAT的模型,它基于GAT(Graph Attention Network)模型,并添加了位置嵌入(location embedding)来考虑节点在图中的位置信息。具体来说,该模型包含一个GATConv层(表示第一层GAT),它将输入的特征向量(features)和边的索引(edge_indices)作为输入,并输出一个新的特征向量。第二层GATConv层将第一层的输出、位置嵌入和边的索引作为输入,并输出最终的特征向量。在模型的前向传播过程中,将输入的特征向量和位置嵌入在最开始的时候拼接在一起,然后经过第一层GATConv层进行处理,接着经过ReLU激活函数和dropout层。最后再次将特征向量和位置嵌入拼接在一起,经过第二层GATConv层得到输出结果。整个模型可以用于图分类、节点分类等任务。
阅读全文