class RNN(nn.Module): def __init__(self): super().__init__() def forward(self, input): output = input + 1 return output Network = RNN() x = torch.tensor(1) out = RNN(x) print(out)为什么报错TypeError: __init__() takes 1 positional argument but 2 were given
时间: 2023-03-27 21:03:39 浏览: 88
这是因为在创建 RNN 实例时,没有传入任何参数,但是在调用 RNN 实例时,传入了一个参数,导致参数数量不匹配,从而报错。正确的方式是将 x 作为参数传入 Network 实例中,即 out = Network(x)。
相关问题
class RNN(nn.Module): #overload __init__() method def __init__(self): super(RNN, self).__init__() self.rnn = nn.LSTM( input_size=28, hidden_size=64, num_layers=1, batch_first=True, ) self.out = nn.Linear(64,10) #overload forward() method def forward(self, x): r_out, (h_n, h_c) = self.rnn(x, None) out = self.out(r_out[: ,-1, :]) return out rnn = RNN() print(rnn)
这段代码定义了一个名为 RNN 的神经网络模型,该模型包含一个 LSTM 层和一个全连接层。具体解释如下:
1. `class RNN(nn.Module)`:定义了一个名为 RNN 的类,继承自 PyTorch 中的 `nn.Module` 类,这意味着 RNN 类是一个神经网络模型。
2. `def __init__(self)`:定义了 RNN 类的构造函数,该函数在创建 RNN 类的实例时被调用。
3. `super(RNN, self).__init__()`:调用 `nn.Module` 类的构造函数,初始化 RNN 类的父类。
4. `self.rnn = nn.LSTM(input_size=28, hidden_size=64, num_layers=1, batch_first=True)`:定义了一个 LSTM 层,并将其保存在 `self.rnn` 中。其中,`input_size=28` 表示输入数据的特征数为28,`hidden_size=64` 表示 LSTM 层的隐藏状态的维度为64,`num_layers=1` 表示 LSTM 层的层数为1,`batch_first=True` 表示输入数据的第一维为 batch size。
5. `self.out = nn.Linear(64,10)`:定义了一个全连接层,将 LSTM 层的输出映射到10个输出类别。
6. `def forward(self, x)`:定义了 RNN 类的前向传播函数,该函数在调用 `rnn(x)` 时被自动调用。
7. `r_out, (h_n, h_c) = self.rnn(x, None)`:调用 LSTM 层进行前向传播,其中 `x` 是输入数据,`(h_n, h_c)` 表示 LSTM 层的隐藏状态和记忆状态,`None` 表示使用默认的隐藏状态和记忆状态。
8. `out = self.out(r_out[: ,-1, :])`:将 LSTM 层的输出进行全连接映射,并输出结果。其中,`r_out[:, -1, :]` 表示取 LSTM 层最后一个时间步的输出。
9. `rnn = RNN() print(rnn)`:创建一个 RNN 类的实例,打印该实例,输出该实例的结构。
请补全以下代码:class AttModel(nn.Module): def __init__(self, n_input, n_hidden, seq_len): """ n_input: 单词数量 n_hidden: hidden state维度 sequence_len: 输入文本的长度 """ super(Model, self).__init__() # 传入参数 self.hidden_dim = n_hidden self.input_size = n_input self.output_size = n_input self.n_layers = 1 # Global Attention机制需要使用RNN的最大Timestep数 #即需要计算当前timestep和多少timestep的相似度权重(Alignment Weight) self.max_length = 10 # 定义结构 # RNN层 可参考 https://pytorch.org/docs/stable/generated/torch.nn.RNN.html self.rnn = nn.RNN(self.input_size,self.hidden_dim,self.n_layers,batch_first=True) # 注意力层-用于计算score self.attn = torch.nn.Linear(in_features=, out_features=, bias=False) # 注意力层-用于已经拼接了ct和ht后的变换。 self.w_c = torch.nn.Linear(in_features=, out_features=) # 全联接层 可参考 https://pytorch.org/docs/stable/generated/torch.nn.Linear.html self.fc = nn.Linear()
class AttModel(nn.Module):
def __init__(self, n_input, n_hidden, seq_len):
"""
n_input: 单词数量
n_hidden: hidden state维度
sequence_len: 输入文本的长度
"""
super(AttModel, self).__init__() # 正确的调用父类的方法
self.n_input = n_input
self.n_hidden = n_hidden
self.seq_len = seq_len
self.linear = nn.Linear(n_hidden, n_hidden)
self.encoder = nn.Embedding(n_input, n_hidden)
self.attention = nn.Linear(n_hidden, 1)
def forward(self, x):
x = self.encoder(x)
x = x.view(-1, self.seq_len, self.n_hidden)
e = torch.tanh(self.linear(x))
a = torch.softmax(self.attention(e), dim=1)
h = torch.bmm(a.permute(0, 2, 1), x).squeeze()
return h