import torch import torch.nn as nn # 定义序列数据 sequence_data = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # 定义RNN模型 class RNN1(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size): super(RNN1, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size) # 修改这里的h0初始化 lu = x.unsqueeze(0) out, _ = self.rnn(lu, h0) # 添加unsqueeze(0)来增加batch维度 out = self.fc(out[:, -1, :]) # 取序列最后一个时间步的输出 return out # 定义模型参数 input_size = 3 # 输入大小,即序列的特征维度 hidden_size = 5 # 隐藏层大小 num_layers = 1 # RNN隐层数 output_size = 1 # 输出大小 # 创建模型实例 model = RNN1(input_size, hidden_size, num_layers, output_size) # 运行模型 outputs = model(sequence_data) # 输出结果 print(outputs) 这段代码报错:RuntimeError: Expected hidden size (1, 1, 5), got [1, 3, 5], 请分析原因
时间: 2023-12-15 22:07:16 浏览: 140
这个错误是因为对于 RNN 模型的初始隐藏状态 h0 没有正确初始化,导致期望的维度与实际维度不匹配。在这段代码中,h0 的维度应该是 (num_layers, batch_size, hidden_size),而 batch_size 的大小应该是序列数据的样本数,即3。因此,h0 应该被初始化为 torch.zeros(num_layers, sequence_data.size(0), hidden_size),而不是 torch.zeros(self.num_layers, x.size(0), self.hidden_size)。此外,为了让输入数据具有 batch 维度,需要在输入数据上添加一个维度,即使用 unsqueeze(0)。因此,代码应该修改为:
```
import torch
import torch.nn as nn
# 定义序列数据
sequence_data = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# 定义RNN模型
class RNN1(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(RNN1, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
lu = x.unsqueeze(0) # 添加unsqueeze(0)来增加batch维度
out, _ = self.rnn(lu, h0)
out = self.fc(out[:, -1, :])
return out
# 定义模型参数
input_size = 3
hidden_size = 5
num_layers = 1
output_size = 1
# 创建模型实例
model = RNN1(input_size, hidden_size, num_layers, output_size)
# 运行模型
outputs = model(sequence_data)
# 输出结果
print(outputs)
```
这样应该就可以运行了。
阅读全文