import numpy import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn from torch.utils.data import DataLoader, Dataset import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value print(scalar) dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 3).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') train_X = torch.from_numpy(train_X) train_Y = torch.from_numpy(train_Y) test_X = torch.from_numpy(test_X) class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): out, h = self.rnn(x) out = self.linear(out[0]) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() # 反向传播 loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show()请适当修改代码,并写出预测值和真实值的代码

时间: 2024-03-18 11:41:25 浏览: 53
以下是适当修改后的代码以及预测值和真实值的代码: ``` import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn from torch.utils.data import DataLoader, Dataset import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value print(scalar) dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 1).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') train_X = torch.from_numpy(train_X) train_Y = torch.from_numpy(train_Y) test_X = torch.from_numpy(test_X) class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): out, h = self.rnn(x) out = self.linear(out[:, -1, :]) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show() # 预测值和真实值的代码 net.eval() pred_test = net(test_X) pred_test = pred_test.detach().numpy() * scalar test_Y = test_Y.reshape(-1, 1) * scalar plt.plot(pred_test, label='predict') plt.plot(test_Y, label='true') plt.legend() plt.show() ```

相关推荐

修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)

帮我把这段代码从tensorflow框架改成pytorch框架: import tensorflow as tf import os import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "0" base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') batch_size = 64 epochs = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val train_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) validation_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') sample_training_images, _ = next(train_data_gen) model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(2, activation='softmax') ]) model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() history = model.fit_generator( train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size ) # 可视化训练结果 acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) model.save("./model/timo_classification_128_maxPool2D_dense256.h5")

最新推荐

recommend-type

基于卷积神经网络的食物识别及实现.pdf

在超市无人结算服务中,使用电子标签对部分货物如水果、蔬菜等进行结算的成本过高、便捷性不高,至今依然采用人工结算的方式。 针对这一问题,本文提出了基于卷积神经网络的食物识别方法。 通过自建水果数据集来训练卷积神经网络分类模型;基于训练后的模型构建可视化平台进行食物识别。 实验结果表明,利用卷积神经网络的食物识别的预测准确率 为 96.34%。
recommend-type

使用 Javascript 编写的 ToDo List 应用程序及其源代码.zip

项目:使用 JavaScript 编写的 ToDo List 应用程序及其源代码 ToDo List App 是一个使用 JavaScript、CSS 和 HTML 开发的简单项目。这个项目很有趣。在这里,用户可以添加待办事项详细信息的数量,您可以看到以列表形式存储的详细信息,如便签。此外,如果用户想删除列表项,也可以删除它。   项目制作 ToDo List App 项目仅包含 HTML、CSS 和 JavaScript。谈到该系统的功能,用户可以列出他们必须完成的日常工作并将其作为记录保存。您只需在文本字段中输入工作信息,然后按 Enter 键即可将信息添加到记录中。该项目包含大量 JavaScript,用于使项目正常运行。 如何运行该项目? 要运行此项目,您不需要任何类型的本地服务器,但需要浏览器。我们建议您使用现代浏览器,如 Google Chrome 和 Mozilla Firefox。要运行此系统,首先,通过单击 index.html 文件在浏览器中打开项目。 演示: 该项目为国外大神项目,可以作为毕业设计的项目,也可以作为大作业项目,不用担心代码重复,设计重复等,如果需要对项目进行修改,需要具备一定基础知识。 注意:如果装有360等杀毒软件,可能会出现误报的情况,源码本身并无病毒,使用源码时可以关闭360,或者添加信任。
recommend-type

SDN权威指南:深入解析软件定义网络与OpenFlow

"SDN: Software Defined Networks 由 Thomas D. Nadeau 和 Ken Gray 编著,这是一本深入剖析SDN技术的权威指南。本书详细介绍了软件定义网络(SDN)的概念、原理以及OpenFlow等相关技术,是计算机教材和IT专业人员的重要参考资料。" 在SDN(Software Defined Networking)这一领域,它代表了网络架构的一次重大革新,将控制平面与数据平面分离,从而实现了网络的灵活配置和集中管理。这本书由Thomas D. Nadeau和Ken Gray共同撰写,他们都是SDN领域的专家,提供了对SDN的深度解析。 书中主要知识点包括: 1. **SDN的基本概念**:解释了SDN的核心理念,即通过将网络控制逻辑从底层硬件中抽象出来,集中到一个独立的控制器,使得网络可以像软件一样被编程和管理。 2. **OpenFlow协议**:OpenFlow是SDN中最著名的数据平面接口,它允许控制器直接与交换机通信,定义数据包的转发路径。书中详细阐述了OpenFlow的工作机制、协议报文结构和如何实现流表的建立与更新。 3. **SDN架构**:描述了典型的SDN架构,包括网络设备(如交换机、路由器)、控制器以及应用层的构成,分析了各部分的角色和交互方式。 4. **SDN的优势**:讨论了SDN带来的好处,如提高网络的灵活性、可扩展性,简化网络管理,以及支持创新的网络服务和策略。 5. **安全性与挑战**:探讨了SDN在安全方面可能面临的问题,如集中式控制器的安全隐患、数据平面的攻击面扩大等,并提出了相应的解决方案。 6. **SDN的应用场景**:列举了SDN在数据中心网络、云计算、虚拟化环境、广域网优化、网络安全等领域中的实际应用案例,展示了SDN技术的广泛影响力。 7. **控制器平台与框架**:介绍了一些主流的SDN控制器,如OpenDaylight、ONOS等,以及相关的开发框架和工具,帮助读者理解如何构建和部署SDN解决方案。 8. **未来发展趋势**:分析了SDN技术的未来发展方向,包括NFV(网络功能虚拟化)、边缘计算、5G网络等,预示了SDN在下一代网络中的关键作用。 本书不仅适合网络工程师、研究人员和学者深入学习SDN,也适合作为高校相关专业的教材,通过理论与实践相结合的方式,帮助读者掌握SDN技术并应用于实际网络环境中。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

PHP图片上传扩展应用:实现图片裁剪、水印和压缩功能

![PHP图片上传扩展应用:实现图片裁剪、水印和压缩功能](https://st0.dancf.com/market-operations/market/side/1701682825707.jpg) # 1. PHP图片上传扩展介绍 PHP提供了多种图片上传扩展,允许开发者轻松地将图片上传到服务器。这些扩展包括: - **GD库:**一个用于处理图像的标准PHP扩展,提供基本的图片操作功能,如裁剪、缩放和添加水印。 - **ImageMagick:**一个功能强大的命令行工具,可用于执行更高级的图像处理任务,如复杂的裁剪、颜色校正和格式转换。 # 2. PHP图片裁剪技术 ### 2
recommend-type

sentinel 热点限流nacos配置

Sentinel 是阿里巴巴开源的一个流量控制框架,它支持热点限流功能。要通过 Nacos 配置 Sentinel 的热点限流,首先需要在 Nacos 中管理 Sentinel 相关的服务发现配置。 1. **创建Nacos配置**: - 登录到 Nacos 控制台,进入 `配置` 或者 `Config Center` 页面。 - 创建一个新的数据源,用于存放 Sentinel 的配置文件,比如命名空间为 `sentinel-config`。 2. **配置热点规则**: - 编辑一个名为 `hot_rule.yaml` 或类似名称的配置文件,添加如下内容: `
recommend-type

HP9000服务器宝典:从入门到进阶

"HP9000非常宝典.pdf" 这篇文档是关于HP9000服务器的详尽指南,涵盖了从基础概念到高级操作的多个方面。以下是文档中提到的一些关键知识点: 1. HP9000服务器:这是惠普公司生产的一系列高性能、可靠性高的企业级服务器,主要面向大型企业和组织。 2. 服务器产品分类:服务器通常按照功能、性能和规模进行分类,如入门级、部门级、企业级等,HP9000可能包括其中的不同型号。 3. CPU:服务器的核心组件,文档中可能介绍了HP9000所使用的处理器类型及其特性。 4. 配置相关信息:这部分内容涉及如何配置服务器硬件,如内存、硬盘、网络接口等,以及如何检查系统配置信息。 5. 维护相关信息:包括如何进行日常维护,如监控系统状态、错误日志分析、硬件更换等。 6. ModelString、SWID和ssconfig:这些是HP服务器特有的标识符和工具,用于识别和管理硬件及软件。 7. 操作系统:文档可能详细介绍了支持HP9000的多种操作系统,如HP-UX、Linux等,并可能涉及启动流程。 8. 启动过程:从开机到操作系统加载的整个流程,包括PDC(Processor Dependent Code)、ISL、LoadKernel、Startsubsystem、初始化脚本如/etc/init、/sbin/bcheckrc、/etc/rc.config、/sbin/rc等。 9. Init进程问题:讨论了当命令反复启动过快时,系统如何处理,如"Init: Command is Respawning Too Rapidly"。 10. 登录与权限:描述了用户登录系统的过程,以及权限管理和认证。 11. Patches和应用软件安装:讲述了如何列出、安装和验证补丁,以及补丁评级和打包安装方法。还提到了补丁光盘和标准补丁包-SupportPlus。 12. 系统核心(Kernel):核心是操作系统的核心部分,文档可能讲解了其作用、如何手工编译生成新的核心。 13. LVM (Logical Volume Manager):一种磁盘管理技术,允许动态扩展和管理磁盘空间。文档给出了创建镜像、LVM磁盘结构、pvcreate、mkboot、vgcfgbackup/vgcfgrestore、vgchange等操作的实例。 14. 集群和高可用性:如MC/ServiceGuard,介绍了节点(node)、共享存储、心跳线、备份网卡和锁盘的概念,以及如何实现高可用性。 15. CrashDump与HPMC:CrashDump是系统崩溃时保存的内存转储,用于故障分析。HPMC(Machine Console)提供了远程监控和管理服务器的功能。文档介绍了如何配置DumpDevice、保存和分析CrashDump,以及收集和分析HPMC数据。 此文档对于理解和管理HP9000服务器系统具有极高的参考价值,无论是对于初学者还是经验丰富的管理员,都能从中获得宝贵的信息。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

PHP图片上传性能监控与分析:识别性能瓶颈并优化上传流程

![PHP图片上传性能监控与分析:识别性能瓶颈并优化上传流程](https://embed-ssl.wistia.com/deliveries/41ccfbce47f61e2883c01ed91797198b.webp?image_crop_resized=960x540) # 1. PHP图片上传概述** PHP图片上传是一种将图片文件从客户端传输到服务器的过程。它涉及多个步骤,包括: - **客户端准备:**用户选择要上传的图片文件。 - **网络传输:**图片文件通过HTTP请求发送到服务器。 - **服务器处理:**服务器接收文件,将其保存到指定位置并执行任何必要的处理(例如,验证
recommend-type

在labelimg里删改了标签后,labelimg闪退怎么解决

LabelImg是一款用于图像标注的工具,如果在修改标签后遇到闪退的问题,可以尝试以下几个步骤来解决问题: 1. **更新到最新版本**:检查LabelImg是否有新版本发布,有时软件的bug可能已经在后续更新中修复。 2. **清除缓存和数据**:关闭LabelImg后,删除其安装目录下的.cache文件夹,这通常位于应用程序数据路径下,清理这部分可能导致的配置冲突。 3. **检查文件损坏**:确保你正在处理的图像文件没有损坏,有时候错误的文件可能会导致程序崩溃。 4. **错误日志排查**:查找LabelImg安装目录下的logs文件夹,查看是否存在异常的日志信息,可以帮助定位问