用pytorch写一段代码:以西储大学CWRU轴承故障的振动信号数据库作为模型的训练集,故障类型标签包括:正常、内圈故障、外圈故障和滚动体故障四类。首先将一维故障信号转换为二维灰度图作为CNN模型的输...
时间: 2024-05-03 08:17:37 浏览: 209
好的,这里是一个基于PyTorch的代码示例,用于将CWRU轴承故障的振动信号数据库作为模型的训练集:
```python
import os
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
class CWRU_Dataset(Dataset):
def __init__(self, data_dir, transform=None):
self.data_dir = data_dir
self.transform = transform
self.labels = {'Normal': 0, 'InnerRaceFault': 1, 'OuterRaceFault': 2, 'RollingElementFault': 3}
self.data = []
self.targets = []
for label in self.labels.keys():
label_dir = os.path.join(data_dir, label)
for filename in os.listdir(label_dir):
filepath = os.path.join(label_dir, filename)
data = np.load(filepath)
self.data.append(data)
self.targets.append(self.labels[label])
def __len__(self):
return len(self.data)
def __getitem__(self, index):
data = self.data[index]
target = self.targets[index]
if self.transform:
data = self.transform(data)
return data, target
class ToGrayImage(object):
def __call__(self, data):
image = np.zeros((data.shape[1], data.shape[0], 3), dtype=np.uint8)
data = np.abs(data)
data = (data - np.min(data)) / (np.max(data) - np.min(data))
image[:, :, 0] = data * 255
image[:, :, 1] = data * 255
image[:, :, 2] = data * 255
return image
data_transform = transforms.Compose([
ToGrayImage(),
transforms.ToPILImage(),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_dataset = CWRU_Dataset('path/to/training/data', transform=data_transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
class CNN_Model(torch.nn.Module):
def __init__(self, num_classes):
super(CNN_Model, self).__init__()
self.layer1 = torch.nn.Sequential(
torch.nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
torch.nn.BatchNorm2d(32),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = torch.nn.Sequential(
torch.nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
torch.nn.BatchNorm2d(64),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2))
self.layer3 = torch.nn.Sequential(
torch.nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
torch.nn.BatchNorm2d(128),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2))
self.layer4 = torch.nn.Sequential(
torch.nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
torch.nn.BatchNorm2d(256),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2))
self.fc1 = torch.nn.Linear(256 * 14 * 14, 1024)
self.fc2 = torch.nn.Linear(1024, num_classes)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = out.reshape(out.size(0), -1)
out = self.fc1(out)
out = self.fc2(out)
return out
model = CNN_Model(num_classes=4)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
num_epochs = 10
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 10 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
```
这个代码示例将CWRU轴承故障的振动信号数据库加载到PyTorch的Dataset中,并将一维故障信号转换为二维灰度图作为CNN模型的输入。模型由四个卷积层和两个全连接层组成,并使用Adam优化器进行训练。在训练期间,将输出每个批次的损失以进行监控。
阅读全文