帮我把这段代码从tensorflow框架改成pytorch框架: import tensorflow as tf import os import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "0" base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') batch_size = 64 epochs = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val train_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) validation_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') sample_training_images, _ = next(train_data_gen) model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(2, activation='softmax') ]) model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() history = model.fit_generator( train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size ) # 可视化训练结果 acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) model.save("./model/timo_classification_128_maxPool2D_dense256.h5")

时间: 2023-06-08 17:06:07 浏览: 53
import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms import os BATCH_SIZE = 64 EPOCHS = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 train_transforms = transforms.Compose([ transforms.Resize((IMG_HEIGHT,IMG_WIDTH)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])]) test_transforms = transforms.Compose([ transforms.Resize((IMG_HEIGHT,IMG_WIDTH)), transforms.ToTensor(), transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])]) base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') train_dataset = datasets.ImageFolder(train_dir, transform=train_transforms) train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True) test_dataset = datasets.ImageFolder(validation_dir, transform=test_transforms) test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = nn.Sequential( nn.Conv2d(3, 16, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(16, 32, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(32, 64, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(64 * (IMG_HEIGHT // 8) * (IMG_WIDTH // 8), 256), nn.ReLU(), nn.Linear(256, 2), nn.Softmax(dim=1) ) model.to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) for epoch in range(EPOCHS): train_loss = 0.0 train_acc = 0.0 model.train() for images, labels in train_loader: images = images.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() * images.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc / len(train_loader.dataset) print('Epoch: {} \tTraining Loss: {:.6f} \tTraining Accuracy: {:.6f}'.format(epoch+1, train_loss,train_acc)) with torch.no_grad(): test_loss = 0.0 test_acc = 0.0 model.eval() for images, labels in test_loader: images = images.to(device) labels = labels.to(device) outputs = model(images) loss = criterion(outputs, labels) test_loss += loss.item() * images.size(0) _, preds = torch.max(outputs, 1) test_acc += torch.sum(preds == labels.data) test_loss = test_loss / len(test_loader.dataset) test_acc = test_acc / len(test_loader.dataset) print('Test Loss: {:.6f} \tTest Accuracy: {:.6f}'.format(test_loss,test_acc))

相关推荐

这段代码导入了一些常用的Python库和模块,以及一些特定的工具和函数。让我逐一解释它们的作用: - import numpy as np: 导入NumPy库并将其命名为np,用于进行数值计算和数组操作。 - import random: 导入Python的随机数模块,用于生成随机数和进行随机抽样。 - import math: 导入Python的数学模块,提供了一些数学函数和常量。 - import os: 导入Python的操作系统模块,用于进行文件和目录操作。 - import scipy.io: 导入SciPy库中的io模块,用于读取和写入各种数据文件。 - import matplotlib.pyplot as plt: 导入Matplotlib库中的pyplot模块,并将其命名为plt,用于绘制数据可视化图形。 - import torch: 导入PyTorch深度学习库。 - import torch.nn as nn: 导入PyTorch中的神经网络模块,用于定义和构建神经网络模型。 - import torch.nn.functional as F: 导入PyTorch中的函数式接口模块,提供了一些常用的非线性函数和损失函数。 - import torchvision: 导入PyTorch中的计算机视觉库,用于处理图像和视频数据。 - import transformers: 导入Hugging Face的Transformers库,用于自然语言处理任务和预训练模型。 - %matplotlib inline: 这是一个Jupyter Notebook的魔术命令,用于在Notebook中内联显示Matplotlib绘图的结果。 通过导入这些库和模块,代码可以使用它们提供的功能来进行数据处理、数学计算、文件操作、绘图、深度学习模型构建和自然语言处理等任务。
这段代码是导入所需的Python库和模块。其中: - numpy:Python的一个科学计算库,用于支持大型多维数组和矩阵运算。 - paddle:百度开源的深度学习框架,类似于TensorFlow和PyTorch。 - paddle.dataset.mnist:paddle框架中的MNIST数据集模块。 - paddle.fluid:paddle框架的核心模块,提供了深度学习训练和推理所需的各种API和工具。 - PIL:Python中的图像处理库,可以用于图像的读取、处理和展示。 - matplotlib:Python的一个绘图库,用于数据可视化。 - pathlib:Python 3.4引入的一个库,提供了一种面向对象的路径操作方式。 - paddle.vision.datasets:paddle框架中的视觉数据集模块,提供了常用的视觉数据集和数据集处理方法。 - paddle.vision.transforms:paddle框架中的数据预处理模块,提供了常用的数据预处理方法,如图像的缩放、翻转、裁剪等。 - paddle.nn.functional:paddle框架中的函数式API模块,提供了常用的深度学习函数和操作。 - sklearn.metrics:scikit-learn库中的评估指标模块,提供了混淆矩阵、F1-score等评估指标。 - seaborn:Python的一个数据可视化库,可以用于画混淆矩阵等图形。 - json:Python的一个数据格式转换库,用于将数据转换为JSON格式。 - gzip:Python的一个数据压缩库,可以用于压缩和解压缩数据。 - cv2:OpenCV库中的一个模块,用于图像处理和计算机视觉。 - tqdm:Python的一个进度条库,可以用于显示迭代过程中的进度条。 - InputSpec:paddle框架中的输入数据规格类,用于定义输入数据的形状和类型。 - Accuracy:paddle框架中的准确率指标类,用于计算模型的准确率。

帮我把下面这个代码从TensorFlow改成pytorch import tensorflow as tf import os import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "0" base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') batch_size = 64 epochs = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val train_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) validation_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') sample_training_images, _ = next(train_data_gen) model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(2, activation='softmax') ]) model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() history = model.fit_generator( train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size ) # 可视化训练结果 acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) model.save("./model/timo_classification_128_maxPool2D_dense256.h5")

import torch import os import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "0" base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') batch_size = 64 epochs = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val train_image_generator = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(train_dir, transform=transforms.Compose([transforms.Resize((IMG_HEIGHT, IMG_WIDTH)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])), batch_size=batch_size, shuffle=True) validation_image_generator = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(validation_dir, transform=transforms.Compose([transforms.Resize((IMG_HEIGHT, IMG_WIDTH)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])), batch_size=batch_size) model = torch.nn.Sequential( torch.nn.Conv2d(3, 16, kernel_size=3, padding=1), torch.nn.ReLU(), torch.nn.MaxPool2d(2), torch.nn.Conv2d(16, 32, kernel_size=3, padding=1), torch.nn.ReLU(), torch.nn.MaxPool2d(2), torch.nn.Conv2d(32, 64, kernel_size=3, padding=1), torch.nn.ReLU(), torch.nn.MaxPool2d(2), torch.nn.Flatten(), torch.nn.Linear(64*16*16, 256), torch.nn.ReLU(), torch.nn.Linear(256, 2), torch.nn.Softmax() ) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) for epoch in range(epochs): running_loss = 0.0 for i, data in enumerate(train_image_generator, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() epoch_loss = running_loss / (len(train_data_gen) / batch_size) print('Epoch: %d, Loss: %.3f' % (epoch + 1, epoch_loss)) correct = 0 total = 0 with torch.no_grad(): for data in validation_image_generator: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Validation Accuracy: %.2f%%' % (100 * correct / total))
下面是一个基于Pytorch深度学习框架的BP神经网络预测股票的代码示例: python import torch import torch.nn as nn import torch.optim as optim import pandas as pd import numpy as np import matplotlib.pyplot as plt # define the neural network model class Net(nn.Module): def __init__(self, input_size, hidden_size): super(Net, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_size, 1) def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) return out # load the stock data df = pd.read_csv('stock_data.csv') df = df.dropna() # remove any missing data # prepare the input and target data data = df['Close'].values.reshape(-1, 1).astype(np.float32) x_train = data[:-1] y_train = data[1:] # normalize the input and target data x_mean = x_train.mean() x_std = x_train.std() y_mean = y_train.mean() y_std = y_train.std() x_train = (x_train - x_mean) / x_std y_train = (y_train - y_mean) / y_std # convert the data to PyTorch tensors x_train = torch.from_numpy(x_train) y_train = torch.from_numpy(y_train) # define the model and optimizer net = Net(1, 10) criterion = nn.MSELoss() optimizer = optim.Adam(net.parameters(), lr=0.01) # train the model for epoch in range(1000): optimizer.zero_grad() outputs = net(x_train) loss = criterion(outputs, y_train) loss.backward() optimizer.step() if epoch % 100 == 0: print('Epoch {}, Loss: {:.4f}'.format(epoch, loss.item())) # make predictions on the test data x_test = np.array([800, 810, 820, 830, 840, 850]).astype(np.float32) x_test = (x_test - x_mean) / x_std x_test = torch.from_numpy(x_test) y_test = net(x_test).detach().numpy() y_test = y_test * y_std + y_mean # plot the predicted and actual values plt.plot(df['Close'].values, label='Actual') plt.plot(np.arange(7, 13), y_test, label='Predicted') plt.legend() plt.show() 在这个示例中,我们首先定义了一个Net类来表示BP神经网络模型,然后加载股票数据,并将其拆分为输入和目标数据。我们还对数据进行了标准化,并将其转换为PyTorch张量。接下来,我们通过定义模型、损失函数和优化器来训练模型。最后,我们使用训练好的模型进行预测,并将结果可视化。 需要注意的是,在实际应用中,我们需要使用更多的股票数据和更复杂的模型来提高预测的准确性。此外,我们还需要进行交叉验证和调参等操作,以确保模型的鲁棒性和泛化能力。
很抱歉,作为AI语言模型,我没有实际的库和框架的使用权限。在此提供一个基于pytorch的股票预测参考代码: import pandas as pd import numpy as np import datetime from sklearn.preprocessing import MinMaxScaler import torch import torch.nn as nn import matplotlib.pyplot as plt #set seed np.random.seed(0) torch.manual_seed(0) #read data df = pd.read_csv('data.csv', index_col='Date', parse_dates=['Date']) df = df.dropna() data = df['Close'].values.reshape(-1, 1) scaler = MinMaxScaler(feature_range=(-1, 1)) data = scaler.fit_transform(data) #Training and testing set train_size = int(len(data) * 0.8) test_size = len(data) - train_size train_data, test_data = data[0:train_size, :], data[train_size:len(data), :] # Convert to tensor train_data_tensor = torch.FloatTensor(train_data).view(-1) test_data_tensor = torch.FloatTensor(test_data).view(-1) #window size window_size = 30 #Convert data to input/output def create_inout_sequences(input_data, seq_length): inout_seq = [] L = len(input_data) for i in range(L - seq_length): train_seq = input_data[i:i+seq_length] train_label = input_data[i+seq_length:i+seq_length+1] inout_seq.append((train_seq, train_label)) return inout_seq train_inout_seq = create_inout_sequences(train_data_tensor, window_size) test_inout_seq = create_inout_sequences(test_data_tensor, window_size) #Define LSTM Model class LSTM(nn.Module): def __init__(self, input_size=1, hidden_layer_size=50, output_size=1): super().__init__() self.hidden_layer_size = hidden_layer_size self.lstm = nn.LSTM(input_size, hidden_layer_size) self.linear = nn.Linear(hidden_layer_size, output_size) def forward(self, input_seq): lstm_out, _ = self.lstm(input_seq.view(len(input_seq), 1, -1)) predictions = self.linear(lstm_out.view(len(input_seq), -1)) return predictions[-1] model = LSTM() loss_function = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) #Train Model epochs = 100 model.train() for i in range(epochs): for seq, labels in train_inout_seq: optimizer.zero_grad() predicted = model(seq) loss = loss_function(predicted, labels) loss.backward() optimizer.step() if i%25 == 1: print(f'epoch: {i:3} loss: {loss.item():10.8f}') #Test Model model.eval() test_inputs = test_data_tensor[:window_size].tolist() predicted_prices = [] for i in range(len(test_data_tensor)-window_size): seq = torch.FloatTensor(test_inputs[-window_size:]) with torch.no_grad(): model.eval() predicted_prices.append(model(seq).item()) test_inputs.append(predicted_prices[-1]) #Predictions back to actual scale actual_predictions = scaler.inverse_transform(np.array(predicted_prices).reshape(-1, 1)) #Plot Predictions fig = plt.figure(dpi=200, figsize=(5, 3)) plt.plot(df.index[train_size+window_size:], df['Close'][train_size+window_size:], label='Actual') plt.plot(df.index[train_size+window_size:], actual_predictions, label='Prediction') plt.legend() plt.show()
好的,以下是一个简单的用GAN生成一维特征的PyTorch代码: python import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt # 用于生成真实数据的函数,本例使用 y = x^2 + 0.1*noise def get_real_samples(n_samples): x = np.linspace(-1, 1, n_samples) y = x ** 2 + 0.1 * np.random.randn(*x.shape) return x, y # 用于生成噪音数据的函数 def get_noise_samples(n_samples, noise_dim): return np.random.randn(n_samples, noise_dim) # 生成器及其对应的判别器定义 class Generator(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Generator, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, output_size) def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x class Discriminator(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Discriminator, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, output_size) self.sigmoid = nn.Sigmoid() def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.sigmoid(self.fc3(x)) return x # GAN模型训练 def train_gan(generator, discriminator, gan, n_epochs, n_batch, n_noise): # 损失函数及优化器 criterion = nn.BCELoss() optimizer_g = torch.optim.Adam(generator.parameters(), lr=0.001) optimizer_d = torch.optim.Adam(discriminator.parameters(), lr=0.001) # 训练过程中保存损失值 gen_loss_hist = [] dis_loss_hist = [] # 训练数据准备 x_real, _ = get_real_samples(n_batch) x_real = torch.from_numpy(x_real).float() y_real = torch.ones(n_batch, 1) x_noise = torch.randn(n_batch, n_noise) # GAN模型训练 for epoch in range(n_epochs): # 更新判别器 y_fake = discriminator(generator(x_noise)) y_real_pred = discriminator(x_real.unsqueeze(1)) dis_loss_real = criterion(y_real_pred, y_real) dis_loss_fake = criterion(y_fake, torch.zeros(n_batch, 1)) dis_loss = dis_loss_real + dis_loss_fake dis_loss.backward() optimizer_d.step() discriminator.zero_grad() # 更新生成器 y_fake = discriminator(generator(x_noise)) gen_loss = criterion(y_fake, y_real) gen_loss.backward() optimizer_g.step() generator.zero_grad() # 保存损失值 gen_loss_hist.append(gen_loss.item()) dis_loss_hist.append(dis_loss.item()) # 绘制损失值曲线 plt.plot(gen_loss_hist, label='Generator Loss') plt.plot(dis_loss_hist, label='Discriminator Loss') plt.legend() # 模型训练 n_samples = 1000 n_noise = 10 n_hidden = 32 n_epochs = 2000 n_batch = 64 generator = Generator(n_noise, n_hidden, 1) discriminator = Discriminator(1, n_hidden, 1) gan = nn.Sequential(generator, discriminator) train_gan(generator, discriminator, gan, n_epochs, n_batch, n_noise) # 生成样本并绘制结果 x = np.linspace(-1, 1, n_samples) x = torch.from_numpy(x).float() y = generator(torch.randn(n_samples, n_noise)).squeeze().detach().numpy() plt.figure() plt.scatter(x, y, s=1) plt.show() 该代码通过定义生成器和判别器来实现GAN模型,生成器用于生成数据,判别器用于判断真实数据和生成数据。训练过程中先更新判别器,然后再更新生成器。本例使用了一个简单的二次函数作为真实数据的生成函数,使用Adam优化器和BCELoss损失函数进行训练。最终生成的数据可以在代码的最后绘制出来。

最新推荐

超声波雷达驱动(Elmos524.03&Elmos524.09)

超声波雷达驱动(Elmos524.03&Elmos524.09)

ROSE: 亚马逊产品搜索的强大缓存

89→ROSE:用于亚马逊产品搜索的强大缓存Chen Luo,Vihan Lakshman,Anshumali Shrivastava,Tianyu Cao,Sreyashi Nag,Rahul Goutam,Hanqing Lu,Yiwei Song,Bing Yin亚马逊搜索美国加利福尼亚州帕洛阿尔托摘要像Amazon Search这样的产品搜索引擎通常使用缓存来改善客户用户体验;缓存可以改善系统的延迟和搜索质量。但是,随着搜索流量的增加,高速缓存不断增长的大小可能会降低整体系统性能。此外,在现实世界的产品搜索查询中广泛存在的拼写错误、拼写错误和冗余会导致不必要的缓存未命中,从而降低缓存 在本文中,我们介绍了ROSE,一个RO布S t缓存E,一个系统,是宽容的拼写错误和错别字,同时保留传统的缓存查找成本。ROSE的核心组件是一个随机的客户查询ROSE查询重写大多数交通很少流量30X倍玫瑰深度学习模型客户查询ROSE缩短响应时间散列模式,使ROSE能够索引和检

java中mysql的update

Java中MySQL的update可以通过JDBC实现。具体步骤如下: 1. 导入JDBC驱动包,连接MySQL数据库。 2. 创建Statement对象。 3. 编写SQL语句,使用update关键字更新表中的数据。 4. 执行SQL语句,更新数据。 5. 关闭Statement对象和数据库连接。 以下是一个Java程序示例,用于更新MySQL表中的数据: ```java import java.sql.*; public class UpdateExample { public static void main(String[] args) { String

JavaFX教程-UI控件

JavaFX教程——UI控件包括:标签、按钮、复选框、选择框、文本字段、密码字段、选择器等

社交网络中的信息完整性保护

141社交网络中的信息完整性保护摘要路易斯·加西亚-普埃约Facebook美国门洛帕克lgp@fb.com贝尔纳多·桑塔纳·施瓦茨Facebook美国门洛帕克bsantana@fb.com萨曼莎·格思里Facebook美国门洛帕克samguthrie@fb.com徐宝轩Facebook美国门洛帕克baoxuanxu@fb.com信息渠道。这些网站促进了分发,Facebook和Twitter等社交媒体平台在过去十年中受益于大规模采用,反过来又助长了传播有害内容的可能性,包括虚假和误导性信息。这些内容中的一些通过用户操作(例如共享)获得大规模分发,以至于内容移除或分发减少并不总是阻止其病毒式传播。同时,社交媒体平台实施解决方案以保持其完整性的努力通常是不透明的,导致用户不知道网站上发生的任何完整性干预。在本文中,我们提出了在Facebook News Feed中的内容共享操作中添加现在可见的摩擦机制的基本原理,其设计和实现挑战,以�

fluent-ffmpeg转流jsmpeg

以下是使用fluent-ffmpeg和jsmpeg将rtsp流转换为websocket流的示例代码: ```javascript const http = require('http'); const WebSocket = require('ws'); const ffmpeg = require('fluent-ffmpeg'); const server = http.createServer(); const wss = new WebSocket.Server({ server }); wss.on('connection', (ws) => { const ffmpegS

Python单选题库(2).docx

Python单选题库(2) Python单选题库(2)全文共19页,当前为第1页。Python单选题库(2)全文共19页,当前为第1页。Python单选题库 Python单选题库(2)全文共19页,当前为第1页。 Python单选题库(2)全文共19页,当前为第1页。 Python单选题库 一、python语法基础 1、Python 3.x 版本的保留字总数是 A.27 B.29 C.33 D.16 2.以下选项中,不是Python 语言保留字的是 A while B pass C do D except 3.关于Python 程序格式框架,以下选项中描述错误的是 A Python 语言不采用严格的"缩进"来表明程序的格式框架 B Python 单层缩进代码属于之前最邻近的一行非缩进代码,多层缩进代码根据缩进关系决定所属范围 C Python 语言的缩进可以采用Tab 键实现 D 判断、循环、函数等语法形式能够通过缩进包含一批Python 代码,进而表达对应的语义 4.下列选项中不符合Python语言变量命名规则的是 A TempStr B I C 3_1 D _AI 5.以下选项中

利用脑信号提高阅读理解的信息检索模型探索

380∗→利用脑信号更好地理解人类阅读理解叶紫怡1、谢晓辉1、刘益群1、王志宏1、陈雪松1、张敏1、马少平11北京国家研究中心人工智能研究所计算机科学与技术系清华大学信息科学与技术学院,中国北京yeziyi1998@gmail.com,xiexh_thu@163.com,yiqunliu@tsinghua.edu.cn,wangzhh629@mail.tsinghua.edu.cn,,chenxuesong1128@163.com,z-m@tsinghua.edu.cn, msp@tsinghua.edu.cn摘要阅读理解是一个复杂的认知过程,涉及到人脑的多种活动。然而,人们对阅读理解过程中大脑的活动以及这些认知活动如何影响信息提取过程知之甚少此外,随着脑成像技术(如脑电图(EEG))的进步,可以几乎实时地收集大脑信号,并探索是否可以将其用作反馈,以促进信息获取性能。在本文中,我们精心设计了一个基于实验室的用户研究,以调查在阅读理解过程中的大脑活动。我们的研究结果表明,不同类型�

结构体指针强制类型转换是什么意思?

结构体指针强制类型转换是指将一个结构体指针强制转换为另一个结构体指针类型,以便对其进行操作。这种转换可能会导致一些错误,因为结构体的数据成员在内存中的重新分配可能会导致内存对齐问题。下面是一个示例代码,演示了如何进行结构体指针强制类型转换: ```c struct person { char name[20]; int age; }; struct student { char name[20]; int age; int grade; }; int main() { struct person p = {"Tom", 20}; s

局域网网络安全设计.doc

xx学院 计算机工程技术学院(软件学院) 毕 业 设 计 " " "题目: 局域网网络安全设计 " "专业: " " "学生姓名: "学号: " "大一班级: "大三班级: " "指导教师姓名: "职称: " 2017年 3月 25日 xx学院计算机工程技术学院 计算机网络技术 专业毕业设计任务书 填表日期: 2017 年 3 月 25 日 "项目名 "局域网网络安全设计 " "学生 " "学生号 " "联系电" " "姓名 " " " "话 " " "指导 " "单位 " "联系电" " "教师 " " " "话 " " "项目 " " "简介 "本项目模拟某企业的局域网内部网络,运用一些网络技术,加上网络安" " "全设备,从而使该企业的局域网网络处于相对安全的局面。 " "设 "目标: " "计 "模拟某企业的局域网内部网络,实现企业局域网内部网络的安全,防止" "任 "非法设备接入内网并将其阻断 " "务 "配置防火墙的安全策略,防止来自外部网络的侵害 " "、 "3.允许内部主机能够访问外网 " "目 "计划: " "标 "确定设计的选题,明确具体的研究方向 " "与 "查阅相关的技术文献,并通过实验检验选题的可行性 " "计 "起草设计论文的主要内容,撰写设计文档 " "划 "初稿交由指导老师审阅 " " "修改完善设计文档,完成设计任务 " "指导教师评语: " " " " " "指导教师评分: " " " "指导教师签名: " "年 月 日 " "答辩专家组对毕业设计答辩评议及成绩评定: " " " " " " " "答辩组长: (签章) " " " " " "年 月 日 " "学院毕业审核意见: " " " " " "院长: (签章) " "年 月 日 " 局域网网络安全设计 摘 要 近几年来,Internet技术日趋成熟,已经开始了从以提供和保证网络联通性为主要目 标的第一代Internet技术向以提供网络数据信息服务为特征的第二代Internet技术的过 渡。这些都促使了计算机网络互联技术迅速的大规模使用。众所周知,作为全球使用范 围最大的信息网,Internet自身协议的开放性极大地方便了各种计算机连网,拓宽了共 享资源。但是,由于在早期网络协议设计上对安全问题的忽视,以及在管理和使用上的 无政府状态,逐渐使Internet自身安全受到严重威胁,与它有关的安全事故屡有发生。 网络安全的威胁主要表现在:非授权访问,冒充合法用户,破坏数据完整性,干扰系统 正常运行,利用网络传播病毒,线路窃听等方面。因此本论文为企业构架网络安全体系 ,主要运用vlan划分、防火墙技术、病毒防护等技术,来实现企业的网络安全。 关键词:端口安全,网络,安全,防火墙,vlan II Abstract In recent years, Internet technology has matured, has begun to provide and guarantee from the network connectivity as the main target of the first generation of Internet technology to provide network data services for the characteristics of the second generation of Internet technology transition. These all contributed to the rapid computer networking technology of large- scale use. As we all know, the world's largest information network use of, Internet openness of their agreement greatly facilitate a variety of computer networking to broaden the sharing of resources. However, in the early design of network protocols on security issues of neglect, as well as in management and use of the anarchy, the Internet increasingly serious threat to their security, and its related security incidents happened quite frequently. Netw