有两张大小相同的图像A和B,利用代码:from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.util import img_as_float import matplotlib.pyplot as plt import numpy as np import cv2 # args args = {"image": './1.png'} # load the image and apply SLIC and extract (approximately) # the supplied number of segments image = cv2.imread(args["image"]) segments = slic(img_as_float(image), n_segments=100, sigma=5) # show the output of SLIC fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 1, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), segments)) plt.axis("off") plt.show() print("segments:\n", segments) print("np.unique(segments):", np.unique(segments)) # loop over the unique segment values for (i, segVal) in enumerate(np.unique(segments)): # construct a mask for the segment print("[x] inspecting segment {}, for {}".format(i, segVal)) mask = np.zeros(image.shape[:2], dtype="uint8") mask[segments == segVal] = 255 print(mask.shape) # show the masked region cv2.imshow("Mask", mask) cv2.imshow("Applied", np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)) cv2.waitKey(0),对A进行超像素分割,将A划分的每个超像素块范围进行记录,应用到B上,使B直接得到超像素图像。给出pytorch实现代码

时间: 2024-02-18 21:01:57 浏览: 160
以下是使用PyTorch实现将图像B应用超像素图像A的代码: ```python import torch import numpy as np import cv2 import matplotlib.pyplot as plt from skimage.segmentation import slic, mark_boundaries from skimage.util import img_as_float # Load the images image_a_path = './image_a.png' image_b_path = './image_b.png' image_a = cv2.imread(image_a_path) image_b = cv2.imread(image_b_path) # Generate superpixels for image A segments_a = slic(img_as_float(image_a), n_segments=100, sigma=5) # Loop over the unique segment values for image A for seg_val in np.unique(segments_a): # Construct a mask for the segment mask = np.zeros(image_a.shape[:2], dtype="uint8") mask[segments_a == seg_val] = 255 # Apply the mask to image B masked_image_b = np.multiply(image_b, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0) # Convert the masked image to a PyTorch tensor tensor_image = torch.from_numpy(masked_image_b.astype(np.float32)).permute(2, 0, 1) / 255.0 # TODO: Apply your PyTorch model to the tensor_image # Convert the output tensor to a masked image output_image = tensor_image.permute(1, 2, 0).numpy() * 255.0 output_image = output_image.astype(np.uint8) output_image = np.multiply(output_image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0) # Show the output image fig = plt.figure('Output') ax = fig.add_subplot(1, 1, 1) ax.imshow(output_image) plt.axis("off") plt.show() ``` 在上面的代码中,我们首先加载了图像A和图像B。然后,我们使用skimage.segmentation中的slic函数生成图像A的超像素图像。对于每个超像素块,我们构造一个掩膜并将其应用到图像B上。然后,我们将掩膜后的图像转换为PyTorch张量,并将其输入到您的PyTorch模型中。最后,我们将输出张量转换回图像格式,并将其与掩膜相乘以获得最终输出图像。

相关推荐

import cv2 import numpy as np import torch import torch.nn.functional as F from skimage.segmentation import slic import matplotlib.pyplot as plt from skimage.segmentation import mark_boundaries from skimage import img_as_float # 定义超像素数量 num_segments = 100 # 加载图像 A 和 B img_a = cv2.imread('img_a.jpg') img_b = cv2.imread('img_b.jpg') # 对图像 A 进行超像素分割,并获取每个超像素块的像素范围 segments_a = slic(img_as_float(img_a), n_segments=num_segments, sigma=5) pixel_ranges = [] for i in range(num_segments): mask = (segments_a == i) indices = np.where(mask)[1] pixel_range = (np.min(indices), np.max(indices)) pixel_ranges.append(pixel_range) # 将像素范围应用到图像 B 上实现超像素分割 segments_b = np.zeros_like(segments_a) for i in range(num_segments): pixel_range = pixel_ranges[i] segment_b = img_b[:, pixel_range[0]:pixel_range[1], :] segment_b = torch.from_numpy(segment_b.transpose(2, 0, 1)).unsqueeze(0).float() segment_b = F.interpolate(segment_b, size=(img_b.shape[0], pixel_range[1] - pixel_range[0]), mode='bilinear', align_corners=True) segment_b = segment_b.squeeze(0).numpy().transpose(1, 2, 0).astype(np.uint8) gray = cv2.cvtColor(segment_b, cv2.COLOR_BGR2GRAY) _, mask = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY) segments_b[np.where(mask)] = i # 可视化超像素分割结果 fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 2, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(img_a, cv2.COLOR_BGR2RGB)), segments_a)) ax = fig.add_subplot(1, 2, 2) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(img_b, cv2.COLOR_BGR2RGB)), segments_b)) plt.axis("off") plt.show(),上述代码中segments_a = slic(img_as_float(img_a), n_segments=num_segments, sigma=5)出现错误:ValueError: Cannot convert from object to float64.

import torch import torchvision.transforms as transforms import numpy as np from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.filters import sobel from skimage.color import rgb2gray from PIL import Image # 超像素数量 num_segments = 100 # 加载图像 image = Image.open('test.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 转换为灰度图像 gray_img = rgb2gray(img_np) # 使用 SLIC 超像素分割算法 segments = slic(img_np, n_segments=num_segments, compactness=10, sigma=1) # 绘制超像素边界线 edge_img = mark_boundaries(img_np, segments) # 转换为灰度图像 gray_edge_img = rgb2gray(edge_img) # 使用 Canny 边缘检测算法 edges = sobel(gray_edge_img) edge_map = edges > np.mean(edges) # 绘制超像素范围的线 line_map = np.zeros_like(gray_img) for i in range(num_segments): line_map[segments == i] = edge_map[segments == i].max() # 将线绘制到图像上 line_img = np.zeros_like(img_np) line_img[:, :, 0] = line_map line_img[:, :, 1] = line_map line_img[:, :, 2] = line_map result_img = img_np * (1 - line_img) + line_img * np.array([1, 0, 0]) # 显示结果 result_img = (result_img * 255).astype(np.uint8) result_img = Image.fromarray(result_img) result_img.show()上述代码出现问题:alueError: zero-size array to reduction operation maximum which has no identity

import torch import torch.nn.functional as F from skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt # 加载图像 image = Image.open('3.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=60, compactness=10) # 可视化超像素索引映射 plt.imshow(segments, cmap='gray') plt.show() # 将超像素索引映射可视化 segment_img = mark_boundaries(img_np, segments) # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((segment_img * 255).astype(np.uint8)) # 保存超像素索引映射可视化 segment_img.save('segment_map.jpg') # 定义超像素池化函数 def superpixel_pooling(feature_map, segments): # 获取超像素数量和特征维度 n_segments = np.unique(segments).size n_channels = feature_map.shape[0] # 初始化超像素特征 pooled_features = torch.zeros((n_segments, n_channels)) # 对每个超像素内的像素特征进行聚合 for segment_id in range(n_segments): mask = (segments == segment_id).reshape(-1, 1, 1) pooled_feature = (feature_map * mask.float()).sum(dim=(1, 2)) / mask.sum() pooled_features[segment_id] = pooled_feature return pooled_features # 进行超像素池化 pooled_features = superpixel_pooling(img_tensor, segments) # 可视化超像素特征图 plt.imshow(pooled_features.transpose(0, 1), cmap='gray') plt.show(),上述代码出现问题:AttributeError: 'numpy.ndarray' object has no attribute 'float'

rom skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt # 加载图像 image = Image.open('3.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=60, compactness=10) # 可视化超像素索引映射 plt.imshow(segments, cmap='gray') plt.show() # 将超像素索引映射可视化 segment_img = mark_boundaries(img_np, segments) # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((segment_img * 255).astype(np.uint8)) # 保存超像素索引映射可视化 segment_img.save('segment_map.jpg') 将上述代码中引入超像素池化代码:import cv2 import numpy as np # 读取图像 img = cv2.imread('3.jpg') # 定义超像素分割器 num_segments = 60 # 超像素数目 slic = cv2.ximgproc.createSuperpixelSLIC(img, cv2.ximgproc.SLICO, num_segments) # 进行超像素分割 slic.iterate(10) # 获取超像素标签和数量 labels = slic.getLabels() num_label = slic.getNumberOfSuperpixels() # 对每个超像素进行池化操作,这里使用平均值池化 pooled = [] for i in range(num_label): mask = labels == i region = img[mask] pooled.append(region.mean(axis=0)) # 将池化后的特征图可视化 pooled = np.array(pooled, dtype=np.uint8) pooled_features = pooled.reshape(-1) pooled_img = cv2.resize(pooled_features, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_NEAREST) print(pooled_img.shape) cv2.imshow('Pooled Image', pooled_img) cv2.waitKey(0),并显示超像素池化后的特征图

最新推荐

recommend-type

AD5676驱动代码,stm32f407通过SPI驱动AD5676采集数据

AD5676驱动代码,stm32f407通过SPI驱动AD5676。 本驱动: 1、基于FreeRTOS系统; 2、stm32f407单片机可直接使用; 接口介绍: int AD5676_init(void); HAL_StatusTypeDef AD5676_set_value(uint8_t ch, uint16_t value); HAL_StatusTypeDef AD5676_power_up(uint8_t ch);
recommend-type

RJFireWall-masttudio

android studio
recommend-type

led-tcp-mas备考资源

led-tcp-mas备考资源
recommend-type

新时代网络语言对汉语言文学发展的积极影响.pdf

新时代网络语言对汉语言文学发展的积极影响
recommend-type

MMMMMMMMMMMMMMMMMMMMMM.zip

MMMMMMMMMMMMMMMMMMMMMM.zip
recommend-type

JDK 17 Linux版本压缩包解压与安装指南

资源摘要信息:"JDK 17 是 Oracle 公司推出的 Java 开发工具包的第17个主要版本,它包括了Java语言和虚拟机规范的更新,以及一系列新的开发工具。这个版本是为了满足开发者对于高性能、高安全性和新特性的需求。'jdk-17_linux-x64_bin.deb.zip' 是该JDK版本的Linux 64位操作系统下的二进制文件格式,通常用于Debian或Ubuntu这样的基于Debian的Linux发行版。该文件是一个压缩包,包含了'jdk-17_linux-x64_bin.deb',这是JDK的安装包,按照Debian包管理系统的格式进行打包。通过安装这个包,用户可以在Linux系统上安装并使用JDK 17进行Java应用的开发。" ### JDK 17 特性概述 - **新特性**:JDK 17 引入了多个新特性,包括模式匹配的记录(record)、switch 表达式的改进、带有文本块的字符串处理增强等。这些新特性旨在提升开发效率和代码的可读性。 - **性能提升**:JDK 17 在性能上也有所提升,包括对即时编译器、垃圾收集器等方面的优化。 - **安全加强**:安全性一直是Java的强项,JDK 17 继续增强了安全特性,包括更多的加密算法支持和安全漏洞的修复。 - **模块化**:JDK 17 继续推动Java平台的模块化发展,模块化有助于减少Java应用程序的总体大小,并提高其安全性。 - **长期支持(LTS)**:JDK 17 是一个长期支持版本,意味着它将获得官方更长时间的技术支持和补丁更新,这对于企业级应用开发至关重要。 ### JDK 安装与使用 - **安装过程**:对于Debian或Ubuntu系统,用户可以通过下载 'jdk-17_linux-x64_bin.deb.zip' 压缩包,解压后得到 'jdk-17_linux-x64_bin.deb' 安装包。用户需要以管理员权限运行命令 `sudo dpkg -i jdk-17_linux-x64_bin.deb` 来安装JDK。 - **环境配置**:安装完成后,需要将JDK的安装路径添加到系统的环境变量中,以便在任何位置调用Java编译器和运行时环境。 - **版本管理**:为了能够管理和切换不同版本的Java,用户可能会使用如jEnv或SDKMAN!等工具来帮助切换Java版本。 ### Linux 系统中的 JDK 管理 - **包管理器**:在Linux系统中,包管理器如apt、yum、dnf等可以用来安装、更新和管理软件包,包括JDK。对于Java开发者而言,了解并熟悉这些包管理器是非常必要的。 - **Java 平台模块系统**:JDK 17 以模块化的方式组织,这意味着Java平台本身以及Java应用程序都可以被构建为一组模块。这有助于管理大型系统,使得只加载运行程序所需的模块成为可能。 ### JDK 版本选择与维护 - **版本选择**:在选择JDK版本时,除了考虑新特性、性能和安全性的需求外,企业级用户还需要考虑到JDK的版本更新周期和企业的维护策略。 - **维护策略**:对于JDK的维护,企业通常会有一个周期性的评估和升级计划,确保使用的是最新的安全补丁和性能改进。 ### JDK 17 的未来发展 - **后续版本的期待**:虽然JDK 17是一个 LTS 版本,但它不是Java版本更新的终点。Oracle 会继续推出后续版本,每六个月发布一个更新版本,每三年发布一个LTS版本。开发者需要关注未来版本中的新特性,以便适时升级开发环境。 通过以上知识点的总结,我们可以了解到JDK 17对于Java开发者的重要性以及如何在Linux系统中进行安装和使用。随着企业对于Java应用性能和安全性的要求不断提高,正确安装和维护JDK变得至关重要。同时,理解JDK的版本更新和维护策略,能够帮助开发者更好地适应和利用Java平台的持续发展。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

SQLAlchemy表级约束与触发器:数据库设计与完整性维护指南(专业性+推荐词汇)

![SQLAlchemy表级约束与触发器:数据库设计与完整性维护指南(专业性+推荐词汇)](http://www.commandprompt.com/media/images/image_ZU91fxs.width-1200.png) # 1. SQLAlchemy简介与安装 ## 简介 SQLAlchemy 是 Python 中一个强大的 SQL 工具包和对象关系映射(ORM)框架。它旨在提供数据库交互的高效、简洁和可扩展的方式。SQLAlchemy 拥有灵活的底层 API,同时提供了 ORM 层,使得开发者可以使用面向对象的方式来构建和操作数据库。 ## 安装 要开始使用 SQLA
recommend-type

jupyter_contrib_nbextensions_master下载后

Jupyter Contrib NbExtensions是一个GitHub存储库,它包含了许多可以增强Jupyter Notebook用户体验的扩展插件。当你从`master`分支下载`jupyter_contrib_nbextensions-master`文件后,你需要做以下几个步骤来安装和启用这些扩展: 1. **克隆仓库**: 先在本地环境中使用Git命令行工具(如Windows的Git Bash或Mac/Linux终端)克隆该仓库到一个合适的目录,比如: ``` git clone https://github.com/jupyter-contrib/jupyter
recommend-type

C++/Qt飞行模拟器教员控制台系统源码发布

资源摘要信息:"该资源是基于C++与Qt框架构建的飞行模拟器教员控制台系统的源码文件,可用于个人课程设计、毕业设计等多个应用场景。项目代码经过测试并确保运行成功,平均答辩评审分数为96分,具有较高的参考价值。项目适合计算机专业人员如计科、人工智能、通信工程、自动化和电子信息等相关专业的在校学生、老师或企业员工学习使用。此外,即使对编程有一定基础的人士,也可以在此代码基础上进行修改,实现新的功能或将其作为毕设、课设、作业等项目的参考。用户在下载使用时应先阅读README.md文件(如果存在),并请注意该项目仅作为学习参考,严禁用于商业用途。" 由于文件名"ori_code_vip"没有详细说明文件内容,我们不能直接从中提取出具体知识点。不过,我们可以从标题和描述中挖掘出以下知识点: 知识点详细说明: 1. C++编程语言: C++是一种通用编程语言,广泛用于软件开发领域。它支持多范式编程,包括面向对象、泛型和过程式编程。C++在系统/应用软件开发、游戏开发、实时物理模拟等方面有着广泛的应用。飞行模拟器教员控制台系统作为项目实现了一个复杂的系统,C++提供的强大功能和性能正是解决此类问题的利器。 2. Qt框架: Qt是一个跨平台的C++图形用户界面应用程序开发框架。它为开发者提供了丰富的工具和类库,用于开发具有专业外观的用户界面。Qt支持包括窗体、控件、数据处理、网络通信、多线程等功能。该框架还包含用于2D/3D图形、动画、数据库集成和国际化等高级功能的模块。利用Qt框架,开发者可以高效地构建跨平台的应用程序,如本项目中的飞行模拟器教员控制台系统。 3. 飞行模拟器系统: 飞行模拟器是一种模拟航空器(如飞机)操作的系统,广泛用于飞行员培训和飞行模拟。飞行模拟器教员控制台系统通常包括多个模块,例如飞行动力学模拟、环境模拟、虚拟仪表板、通信和导航设备模拟等。在本项目中,控制台系统允许教员控制飞行模拟器的运行,如设置天气条件、选择飞行任务、监控学员操作等。 4. 软件开发流程: 软件开发流程是将软件从概念设计到最终交付的过程。这通常包括需求分析、设计、编码、测试和维护阶段。本项目的开发过程涵盖了这些步骤,包括编写可运行的代码,并进行必要的测试以确保功能正常。这为学习软件开发流程提供了很好的实践案例。 5. 项目测试与维护: 软件开发中的测试和维护阶段是确保软件质量的关键。测试包括单元测试、集成测试和系统测试,以确保软件的每个部分都能正常工作。维护是指在软件发布后,对其进行更新和改进,以修正错误、提高性能或适应新的需求。该项目提供了测试成功的代码,为学习软件测试与维护提供了实践材料。 6. 教育与学习资源: 该资源可以作为计算机相关专业学生、教师和从业人员的教育和学习资源。对于学习进阶的初学者来说,它提供了从课程设计到毕业设计的完整项目实现参考。此外,具有一定基础的用户也可以修改项目代码,来实现个性化功能或作为其他项目的起点。 7. 许可与版权: 在使用该项目时,用户需要遵循相应的许可协议。该资源明确提示,仅供学习参考,不得用于商业用途。在软件开发和使用中,了解和遵守版权法规是非常重要的,这关系到知识产权的保护和法律风险的规避。 该资源提供了一个完整的学习案例,从项目设计、编码实现到测试验证,涵盖了软件开发的整个过程。它不仅是一个很好的学习资源,同时也是软件开发实践的一个示例。