有两张大小相同的图像A和B,利用代码:from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.util import img_as_float import matplotlib.pyplot as plt import numpy as np import cv2 # args args = {"image": './1.png'} # load the image and apply SLIC and extract (approximately) # the supplied number of segments image = cv2.imread(args["image"]) segments = slic(img_as_float(image), n_segments=100, sigma=5) # show the output of SLIC fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 1, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), segments)) plt.axis("off") plt.show() print("segments:\n", segments) print("np.unique(segments):", np.unique(segments)) # loop over the unique segment values for (i, segVal) in enumerate(np.unique(segments)): # construct a mask for the segment print("[x] inspecting segment {}, for {}".format(i, segVal)) mask = np.zeros(image.shape[:2], dtype="uint8") mask[segments == segVal] = 255 print(mask.shape) # show the masked region cv2.imshow("Mask", mask) cv2.imshow("Applied", np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)) cv2.waitKey(0),对A进行超像素分割,将A划分的每个超像素块范围进行记录,应用到B上,使B直接得到超像素图像。给出pytorch实现代码
时间: 2024-02-18 21:01:57 浏览: 160
以下是使用PyTorch实现将图像B应用超像素图像A的代码:
```python
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from skimage.segmentation import slic, mark_boundaries
from skimage.util import img_as_float
# Load the images
image_a_path = './image_a.png'
image_b_path = './image_b.png'
image_a = cv2.imread(image_a_path)
image_b = cv2.imread(image_b_path)
# Generate superpixels for image A
segments_a = slic(img_as_float(image_a), n_segments=100, sigma=5)
# Loop over the unique segment values for image A
for seg_val in np.unique(segments_a):
# Construct a mask for the segment
mask = np.zeros(image_a.shape[:2], dtype="uint8")
mask[segments_a == seg_val] = 255
# Apply the mask to image B
masked_image_b = np.multiply(image_b, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)
# Convert the masked image to a PyTorch tensor
tensor_image = torch.from_numpy(masked_image_b.astype(np.float32)).permute(2, 0, 1) / 255.0
# TODO: Apply your PyTorch model to the tensor_image
# Convert the output tensor to a masked image
output_image = tensor_image.permute(1, 2, 0).numpy() * 255.0
output_image = output_image.astype(np.uint8)
output_image = np.multiply(output_image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)
# Show the output image
fig = plt.figure('Output')
ax = fig.add_subplot(1, 1, 1)
ax.imshow(output_image)
plt.axis("off")
plt.show()
```
在上面的代码中,我们首先加载了图像A和图像B。然后,我们使用skimage.segmentation中的slic函数生成图像A的超像素图像。对于每个超像素块,我们构造一个掩膜并将其应用到图像B上。然后,我们将掩膜后的图像转换为PyTorch张量,并将其输入到您的PyTorch模型中。最后,我们将输出张量转换回图像格式,并将其与掩膜相乘以获得最终输出图像。