def forward(self, edge_indices, features, location_embedding): features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_1(features, edge_indices) features = torch.nn.functional.relu(features) features = torch.nn.functional.dropout(features, p=self.dropout, training=self.training) features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_2(features, edge_indices) return features
时间: 2024-01-01 08:06:54 浏览: 113
这段代码是一个GAT网络的前向传播函数。该函数输入三个参数:edge_indices代表节点之间的边列表,features代表每个节点的特征向量,location_embedding代表节点的位置信息向量。
首先将节点的特征向量和位置信息向量进行拼接,然后将其作为输入传递到第一层GAT网络中,通过多头注意力机制对节点特征进行聚合。接着,将GAT第一层的输出通过ReLU激活函数进行非线性变换,并使用dropout进行随机失活,以避免过拟合。最后再次将节点的特征向量和位置信息向量进行拼接,然后将其作为输入传递到第二层GAT网络中,重复前面的操作。最终,将第二层的输出作为函数的输出返回。
这段代码的作用是实现一个带节点位置信息的GAT网络,并且使用了dropout技术进行正则化,防止过拟合。
相关问题
把这段代码里的location_embedding_dim去掉class my_GAT(torch.nn.Module): def __init__(self, in_channels, out_channels, n_heads, location_embedding_dim, filters_1, filters_2, dropout): super(my_GAT, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.n_heads = n_heads location_embedding_dim = 0 self.filters_1 = filters_1 self.filters_2 = filters_2 self.dropout = dropout self.location_embedding_dim = location_embedding_dim self.setup_layers() def setup_layers(self): self.GAT_1 = GATConv(in_channels=self.in_channels,out_channels=self.filters_1, heads=self.n_heads, dropout=0.1) self.GAT_2 = GATConv(in_channels=self.filters_1 * self.n_heads + self.location_embedding_dim, out_channels=self.out_channels, heads=self.n_heads, dropout=0.1, concat=False) def forward(self, edge_indices, features, location_embedding): features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_1(features, edge_indices) features = torch.nn.functional.relu(features) features = torch.nn.functional.dropout(features, p=self.dropout, training=self.training) features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_2(features, edge_indices) return features
这段代码里的location_embedding_dim是一个参数,它表示位置嵌入的维度。如果你想去掉它,可以把它的值设为0,然后在构造函数中把self.location_embedding_dim也设为0即可。具体来说,修改后的代码如下:
```
class my_GAT(torch.nn.Module):
def __init__(self, in_channels, out_channels, n_heads, filters_1, filters_2, dropout):
super(my_GAT, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.n_heads = n_heads
self.filters_1 = filters_1
self.filters_2 = filters_2
self.dropout = dropout
self.location_embedding_dim = 0
self.setup_layers()
def setup_layers(self):
self.GAT_1 = GATConv(in_channels=self.in_channels,out_channels=self.filters_1, heads=self.n_heads, dropout=0.1)
self.GAT_2 = GATConv(in_channels=self.filters_1 * self.n_heads, out_channels=self.out_channels, heads=self.n_heads, dropout=0.1, concat=False)
def forward(self, edge_indices, features, location_embedding):
features = self.GAT_1(features, edge_indices)
features = torch.nn.functional.relu(features)
features = torch.nn.functional.dropout(features, p=self.dropout, training=self.training)
features = self.GAT_2(features, edge_indices)
return features
```
def forward(self, data, org_edge_index): x = data.clone().detach() edge_index_sets = self.edge_index_sets device = data.device batch_num, node_num, all_feature = x.shape x = x.view(-1, all_feature).contiguous() gcn_outs = [] for i, edge_index in enumerate(edge_index_sets): edge_num = edge_index.shape[1] cache_edge_index = self.cache_edge_index_sets[i] if cache_edge_index is None or cache_edge_index.shape[1] != edge_num*batch_num: self.cache_edge_index_sets[i] = get_batch_edge_index(edge_index, batch_num, node_num).to(device) batch_edge_index = self.cache_edge_index_sets[i] all_embeddings = self.embedding(torch.arange(node_num).to(device)) weights_arr = all_embeddings.detach().clone() all_embeddings = all_embeddings.repeat(batch_num, 1) weights = weights_arr.view(node_num, -1) cos_ji_mat = torch.matmul(weights, weights.T) normed_mat = torch.matmul(weights.norm(dim=-1).view(-1,1), weights.norm(dim=-1).view(1,-1)) cos_ji_mat = cos_ji_mat / normed_mat dim = weights.shape[-1] topk_num = self.topk topk_indices_ji = torch.topk(cos_ji_mat, topk_num, dim=-1)[1] self.learned_graph = topk_indices_ji gated_i = torch.arange(0, node_num).T.unsqueeze(1).repeat(1, topk_num).flatten().to(device).unsqueeze(0) gated_j = topk_indices_ji.flatten().unsqueeze(0) gated_edge_index = torch.cat((gated_j, gated_i), dim=0) batch_gated_edge_index = get_batch_edge_index(gated_edge_index, batch_num, node_num).to(device) gcn_out = self.gnn_layers[i](x, batch_gated_edge_index, node_num=node_num*batch_num, embedding=all_embeddings) gcn_outs.append(gcn_out) x = torch.cat(gcn_outs, dim=1) x = x.view(batch_num, node_num, -1) indexes = torch.arange(0,node_num).to(device) out = torch.mul(x, self.embedding(indexes)) out = out.permute(0,2,1) out = F.relu(self.bn_outlayer_in(out)) out = out.permute(0,2,1) out = self.dp(out) out = self.out_layer(out) out = out.view(-1, node_num) return out
这是一个PyTorch模型的前向传播函数,它接受两个参数:data和org_edge_index。该函数使用GCN(图卷积神经网络)来处理输入数据,并返回一个输出张量。具体实现细节可以参考代码中的注释。
阅读全文