class QABasedOnAttentionModel(nn.Module): def __init__(self, vocab_size, embed_size, hidden_size, topk): super(QABasedOnAttentionModel, self).__init__() self.topk = topk self.embedding = nn.Embedding(vocab_size, embed_size) self.encoder = nn.GRU(embed_size, hidden_size, batch_first=True) self.attention = nn.Linear(hidden_size, 1) self.decoder = nn.Linear(hidden_size, vocab_size) def forward(self, input_question, input_answer): question_embed = torch.nn.Parameter(self.embedding(input_question), requires_grad=True) answer_embed = torch.nn.Parameter(self.embedding(input_answer), requires_grad=True) _, question_hidden = self.encoder(question_embed) answer_outputs, _ = self.encoder(answer_embed, question_hidden) attention_weights = self.attention(answer_outputs).squeeze(dim=-1) attention_weights = torch.softmax(attention_weights, dim=1) context_vector = torch.bmm(attention_weights.unsqueeze(dim=1), answer_outputs).squeeze(dim=1) logits = self.decoder(context_vector) top_values, top_indices = torch.topk(logits.view(-1, vocab_size), k=self.topk, dim=1) return top_indices

时间: 2024-04-19 18:27:24 浏览: 12
这个代码片段展示了一个基于注意力机制的问答模型的前向传播过程。该模型使用GRU作为编码器,通过计算问题和答案的注意力权重来获取上下文向量,并将上下文向量输入到解码器中进行预测。 在这段代码中,`input_question`和`input_answer`是作为输入的整数序列,表示问题和答案的标记化数据。`vocab_size`是词汇表的大小,`embed_size`是嵌入层的维度,`hidden_size`是GRU隐藏状态的维度,`topk`是解码时保留的前k个最高概率的标记。 在前向传播过程中,首先将输入的问题和答案序列通过嵌入层进行词嵌入,然后将问题序列输入到GRU编码器中得到最后一个隐藏状态`question_hidden`。接着,将答案序列和问题最后隐藏状态作为初始隐藏状态输入到GRU编码器中,得到答案序列的输出`answer_outputs`。 然后,通过线性层`attention`计算注意力权重,对答案输出进行加权平均得到上下文向量`context_vector`。 最后,通过线性层`decoder`将上下文向量映射为预测的标记概率分布,并使用`torch.topk()`函数获取最高概率的前k个标记的索引。 如果您有关于这段代码的任何问题,请随时提问。
相关问题

RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn class CustomLoss(nn.Module): def __init__(self): super(CustomLoss, self).__init__() def forward(self, predicted_tokens, target_tokens): # 设置predicted_tokens为需要梯度计算的张量 scores = torch.zeros_like(target_tokens, dtype=torch.float32) for i in range(target_tokens.size(1)): target_token = target_tokens[:, i] max_score = torch.max(torch.eq(predicted_tokens, target_token.unsqueeze(dim=1)).float(), dim=1)[0] scores[:, i] = max_score loss = 1 - torch.mean(scores) return loss class QABasedOnAttentionModel(nn.Module): def __init__(self, vocab_size, embed_size, hidden_size, topk): super(QABasedOnAttentionModel, self).__init__() self.topk = topk self.embedding = nn.Embedding(vocab_size, embed_size) self.encoder = nn.GRU(embed_size, hidden_size, batch_first=True) self.attention = nn.Linear(hidden_size, 1) self.decoder = nn.Linear(hidden_size, topk) def forward(self, input_question, input_answer): question_embed = self.embedding(input_question) answer_embed = self.embedding(input_answer) _, question_hidden = self.encoder(question_embed) answer_outputs, _ = self.encoder(answer_embed, question_hidden) attention_weights = self.attention(answer_outputs).squeeze(dim=-1) attention_weights = torch.softmax(attention_weights, dim=1) context_vector = torch.bmm(attention_weights.unsqueeze(dim=1), answer_outputs).squeeze(dim=1) logits = self.decoder(context_vector) return logits

根据你提供的代码,我看不到明显的问题。这个错误通常发生在尝试对不需要梯度的张量进行反向传播时。 如果你确定错误出现在这段代码中,那么可能是在调用`backward()`方法之前,还有其他地方出现了问题。请确保没有在其他地方对该张量进行了操作,使其不再需要梯度。你可以检查一下是否在模型的其他部分或损失函数中使用了`detach()`或`data`等操作,这些操作都会导致张量不再需要梯度。 另外,你可以尝试将`CustomLoss`类中的`forward()`方法的参数也设置为需要梯度计算的张量: ```python def forward(self, predicted_tokens, target_tokens): predicted_tokens.requires_grad_() ... ``` 这样可以确保`predicted_tokens`是需要梯度计算的张量。 如果以上方法仍然没有解决问题,那么可能是其他部分的代码引起了错误。请提供更多的上下文或详细的错误信息,以便我能更好地帮助你解决问题。

class Transformer(nn.Module): def __init__(self, vocab_size: int, max_seq_len: int, embed_dim: int, hidden_dim: int, n_layer: int, n_head: int, ff_dim: int, embed_drop: float, hidden_drop: float): super().__init__() self.tok_embedding = nn.Embedding(vocab_size, embed_dim) self.pos_embedding = nn.Embedding(max_seq_len, embed_dim) layer = nn.TransformerEncoderLayer( d_model=hidden_dim, nhead=n_head, dim_feedforward=ff_dim, dropout=hidden_drop) self.encoder = nn.TransformerEncoder(layer, num_layers=n_layer) self.embed_dropout = nn.Dropout(embed_drop) self.linear1 = nn.Linear(embed_dim, hidden_dim) self.linear2 = nn.Linear(hidden_dim, embed_dim) def encode(self, x, mask): x = x.transpose(0, 1) x = self.encoder(x, src_key_padding_mask=mask) x = x.transpose(0, 1) return x

这是一段使用 PyTorch 实现的 Transformer 模型的代码,用于自然语言处理任务中的序列建模,例如文本分类、机器翻译等。 该模型的输入是一个词汇表大小为 `vocab_size`,最大序列长度为 `max_seq_len` 的词嵌入(embedding)矩阵,其中每个词嵌入的维度为 `embed_dim`。模型使用了 `n_layer` 层 TransformerEncoderLayer,每个 EncoderLayer 中包含了 `n_head` 个注意力头(self-attention)。每个 EncoderLayer 的隐藏层大小为 `hidden_dim`,Feedforward 层的大小为 `ff_dim`,并在每个 EncoderLayer 后应用了一个 `hidden_drop` 的 Dropout。在模型的输入层和第一个 EncoderLayer 之间,使用了一个 `embed_drop` 的 Dropout。 在 forward 方法中,输入的 `x` 是一个形状为 `(batch_size, seq_len)` 的整数张量,表示一个批次中的多个序列。`mask` 是一个形状为 `(batch_size, seq_len)` 的布尔型张量,用于指示哪些位置是填充值,需要被屏蔽。在 encode 方法中,模型首先将输入的 `x` 转置为 `(seq_len, batch_size)` 的形状,然后将其输入到 TransformerEncoder 中进行编码。最后,将编码结果再次转置为 `(batch_size, seq_len)` 的形状并返回。

相关推荐

最新推荐

recommend-type

华为OD机试D卷 - 用连续自然数之和来表达整数 - 免费看解析和代码.html

私信博主免费获取真题解析以及代码
recommend-type

Screenshot_2024-05-10-20-21-01-857_com.chaoxing.mobile.jpg

Screenshot_2024-05-10-20-21-01-857_com.chaoxing.mobile.jpg
recommend-type

数字图像处理|Matlab-频域增强实验-彩色图像的频域滤波.zip

数字图像处理|Matlab-频域增强实验-彩色图像的频域滤波.zip
recommend-type

2024-2030中国定向转向膜市场现状研究分析与发展前景预测报告.docx

2024-2030中国定向转向膜市场现状研究分析与发展前景预测报告
recommend-type

开源工时填报管理系统安装包

开源工时填报管理系统安装包
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

spring添加xml配置文件

1. 创建一个新的Spring配置文件,例如"applicationContext.xml"。 2. 在文件头部添加XML命名空间和schema定义,如下所示: ``` <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。