一个Hadoop工程关于温度的二次排序程序
时间: 2023-04-12 07:01:43 浏览: 101
可以使用MapReduce框架实现二次排序,具体步骤如下:
1. 自定义一个WritableComparable类,用于存储温度和时间戳两个属性,并实现compareTo方法,以便进行二次排序。
2. 自定义一个Mapper类,将输入的数据按照温度和时间戳分别作为key和value输出。
3. 自定义一个Partitioner类,根据key的温度属性将数据分发到不同的Reducer中。
4. 自定义一个GroupingComparator类,用于将相同温度的数据分到同一个组中,以便进行二次排序。
5. 自定义一个Reducer类,将同一温度下的数据按照时间戳进行排序,并输出结果。
完整代码如下:
public class Temperature implements WritableComparable<Temperature> {
private double temp;
private long timestamp;
public Temperature() {}
public Temperature(double temp, long timestamp) {
this.temp = temp;
this.timestamp = timestamp;
}
@Override
public void write(DataOutput out) throws IOException {
out.writeDouble(temp);
out.writeLong(timestamp);
}
@Override
public void readFields(DataInput in) throws IOException {
temp = in.readDouble();
timestamp = in.readLong();
}
@Override
public int compareTo(Temperature o) {
int cmp = Double.compare(temp, o.temp);
if (cmp != 0) {
return cmp;
}
return Long.compare(timestamp, o.timestamp);
}
public double getTemp() {
return temp;
}
public long getTimestamp() {
return timestamp;
}
}
public class TemperatureMapper extends Mapper<LongWritable, Text, Temperature, NullWritable> {
private Temperature temperature = new Temperature();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] fields = value.toString().split(",");
double temp = Double.parseDouble(fields[0]);
long timestamp = Long.parseLong(fields[1]);
temperature = new Temperature(temp, timestamp);
context.write(temperature, NullWritable.get());
}
}
public class TemperaturePartitioner extends Partitioner<Temperature, NullWritable> {
@Override
public int getPartition(Temperature key, NullWritable value, int numPartitions) {
return (int) (key.getTemp() * 100) % numPartitions;
}
}
public class TemperatureGroupingComparator extends WritableComparator {
protected TemperatureGroupingComparator() {
super(Temperature.class, true);
}
@Override
public int compare(WritableComparable a, WritableComparable b) {
Temperature t1 = (Temperature) a;
Temperature t2 = (Temperature) b;
return Double.compare(t1.getTemp(), t2.getTemp());
}
}
public class TemperatureReducer extends Reducer<Temperature, NullWritable, Text, NullWritable> {
@Override
protected void reduce(Temperature key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
for (NullWritable value : values) {
context.write(new Text(key.getTemp() + "," + key.getTimestamp()), NullWritable.get());
}
}
}
在Driver类中,需要设置自定义的WritableComparable类、Mapper类、Partitioner类、GroupingComparator类和Reducer类,并指定输入输出路径等参数。
阅读全文