scala 淘宝回头客 决策树代码
时间: 2023-07-02 09:14:34 浏览: 114
决策树代码
4星 · 用户满意度95%
以下是使用 Scala 实现的决策树算法示例代码,用于预测淘宝购物者是否会成为回头客:
```scala
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.mllib.tree.DecisionTree
import org.apache.spark.mllib.tree.model.DecisionTreeModel
import org.apache.spark.mllib.util.MLUtils
object DecisionTreeDemo {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("DecisionTreeDemo").setMaster("local")
val sc = new SparkContext(conf)
// 加载数据
val data = MLUtils.loadLibSVMFile(sc, "data/sample_libsvm_data.txt")
// 将数据划分为训练集和测试集
val splits = data.randomSplit(Array(0.7, 0.3))
val (trainingData, testData) = (splits(0), splits(1))
// 训练模型
val numClasses = 2
val categoricalFeaturesInfo = Map[Int, Int]()
val impurity = "gini"
val maxDepth = 5
val maxBins = 32
val model = DecisionTree.trainClassifier(trainingData, numClasses, categoricalFeaturesInfo,
impurity, maxDepth, maxBins)
// 测试模型
val labelAndPreds = testData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
val testErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / testData.count()
println("Test Error = " + testErr)
println("Learned classification tree model:\n" + model.toDebugString)
// 保存模型
model.save(sc, "myModelPath")
// 加载模型
val sameModel = DecisionTreeModel.load(sc, "myModelPath")
}
}
```
在这个示例中,我们使用了 Spark MLlib 库中的决策树算法,通过加载样本数据、划分训练集和测试集、训练模型、测试模型以及保存和加载模型等步骤,实现了对淘宝购物者是否会成为回头客进行预测的功能。
阅读全文