解释代码trainer=PPVectorTrainer(configs=args.configs,use_gpu=args.use_gpu) trainer.train(save_model_path=args.save_model_path, resume_model=args.resume_model, pretrained_model=args.pretrained_model, augment_conf_path=args.augment_conf_path)
时间: 2023-06-11 15:09:10 浏览: 184
这段代码的功能是创建一个PPVectorTrainer对象,并使用给定的配置和参数来训练模型。其中:
- `configs`是指定训练过程中使用的配置文件路径或者配置字典。
- `use_gpu`是一个布尔值,表示是否使用 GPU 进行训练。
- `save_model_path`是保存模型的路径。
- `resume_model`是指定是否继续训练已有的模型。
- `pretrained_model`是指定预训练模型的路径,可以在此基础上进行微调训练。
- `augment_conf_path`是指定数据增强的配置文件路径。
`trainer.train()`方法则是开始训练模型,并保存训练好的模型到指定路径。
相关问题
def main(args): cfg = setup(args) if args.eval_only: model = Trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) if cfg.TEST.AUG.ENABLED: res = Trainer.test_with_TTA(cfg, model) else: res = Trainer.test(cfg, model) if comm.is_main_process(): verify_results(cfg, res) return res trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train()
这段代码定义了一个名为`main()`的函数,接受一个参数`args`。该函数首先调用`setup()`函数,将`args`作为参数传递进去,并返回一个配置对象`cfg`。
然后,它检查命令行参数`args.eval_only`是否为True。如果是True,则表示只进行评估而不进行训练。在这种情况下,它会通过调用`Trainer.build_model()`方法来构建模型,并使用`cfg.MODEL.WEIGHTS`参数加载预训练的模型权重。如果设置了`cfg.TEST.AUG.ENABLED`为True,它将使用测试时增强(Test-Time Augmentation)来进行评估,否则将直接进行评估。最后,它会通过调用`verify_results()`函数来验证评估结果,并返回结果。
如果命令行参数`args.eval_only`为False,则表示进行训练。它首先创建一个`Trainer`对象,并使用`cfg`作为参数传递进去。然后,它会通过调用`trainer.resume_or_load()`方法来恢复训练或加载预训练的模型权重。最后,它调用`trainer.train()`方法开始训练,并返回训练结果。
这段代码的作用是根据命令行参数来选择是进行评估还是训练,并执行相应的操作。
from transformers import Trainer, TrainingArguments training_args = TrainingArguments( output_dir='./results', num_train_epochs=3, per_device_train_batch_size=16, per_device_eval_batch_size=64, warmup_steps=500, weight_decay=0.01, logging_dir='./logs', logging_steps=10, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, ) trainer.train()
这段代码是使用Hugging Face的Transformers库训练一个模型,具体来说是使用Trainer类和TrainingArguments类来进行训练。其中的参数设置包括:
- output_dir:输出模型和日志的目录。
- num_train_epochs:训练的轮数。
- per_device_train_batch_size:每个设备上的训练批量大小。
- per_device_eval_batch_size:每个设备上的评估批量大小。
- warmup_steps:学习率线性预热的步数。
- weight_decay:权重衰减的系数。
- logging_dir:日志输出目录。
- logging_steps:每多少步输出一次日志。
之后,利用Trainer来训练模型,传入模型、参数和训练数据集。
阅读全文