plt.bar(bins[:-1], hist, width=1)什么意思
时间: 2024-03-11 11:44:37 浏览: 86
这行代码使用 Matplotlib 库中的 `bar()` 函数来生成直方图的可视化效果。
`bins[:-1]` 表示从 `bins` 数组中取出除最后一个元素外的所有元素,即 bin 的左边界值。`hist` 数组中的每个元素表示对应 bin 中像素值的计数,`width=1` 表示每个 bar 的宽度为 1。
`plt.bar()` 函数将 bin 左边界和对应的像素值计数作为 x 和 y 轴的输入,然后生成一组垂直的矩形,每个矩形的高度表示对应 bin 中的像素值计数。这样就可以通过可视化方式更清晰地观察到图像中每个像素值的分布情况。
这个可视化输出可以帮助我们更好地了解图像中像素值的分布情况,进而进行一些图像处理和分析的任务。
相关问题
import numpy as np import matplotlib.pyplot as plt # 读入灰度图像并显示 img = plt.imread('image.jpg') plt.imshow(img, cmap='gray') plt.show() # 统计直方图并用柱状图显示 hist, bins = np.histogram(img.flatten(), 256, [0, 256]) plt.bar(bins[:-1], hist, width=1) plt.show() # 均衡化图像并显示 cdf = hist.cumsum() cdf_normalized = cdf / cdf.max() img_equalized = np.interp(img.flatten(), bins[:-1], cdf_normalized) img_equalized = img_equalized.reshape(img.shape) plt.imshow(img_equalized, cmap='gray') plt.show() # 统计均衡化后的直方图并用柱状图显示 hist_equalized, bins_equalized = np.histogram(img_equalized.flatten(), 256, [0, 256]) plt.bar(bins_equalized[:-1], hist_equalized, width=1) plt.show()实验中的关键点、难点、实验参数对于结果的影响
实验中的关键点是理解直方图均衡化的原理和算法,并掌握 Python 中相关的库函数和操作方法。
难点在于如何理解和实现直方图均衡化的算法,以及如何通过 Python 代码实现直方图统计和可视化。
实验参数对结果的影响主要是 bin 数量的选择,不同的 bin 数量可能会导致不同的均衡化效果。在实验中,使用了 256 个 bin,这可以适用于大多数图像,但对于某些特定的图像可能需要更多或更少的 bin 来获得更好的均衡化效果。
此外,对于图像的预处理和显示也会影响最终结果的质量,如图像的大小、采样率、压缩比等。在实验中,使用了 Matplotlib 库中的 `imread()` 和 `imshow()` 函数来读取和显示图像,这些函数提供了一些参数选项来控制图像的显示效果,如 cmap、interpolation 等。
# 划分区间 bins = [0,1,2,3,4,5,10,15,20,25,30,35,40,45,50,60,70,80,90,100,1220] data = data_forecast_is_stk_bs_rpt_zq_befor_big['本年比上一年归母倍数'] data1 = data_forecast_is_stk_bs_rpt_cw_befor_big['本年比上一年归母倍数'] # 统计每个柱子的数据 hist, edges = pd.cut(data, bins=bins, right=False, include_lowest=True, retbins=True) hist1, edges1 = pd.cut(data1, bins=bins, right=False, include_lowest=True, retbins=True) counts = hist.value_counts() counts1 = hist1.value_counts() # 按照 hist 的顺序重新排序 counts counts = counts.reindex(hist.cat.categories) counts1 = counts1.reindex(hist1.cat.categories) # 按照 bins 的顺序给每个柱子指定标签 labels = counts.index.astype(str) labels1 = counts1.index.astype(str) fig, ax = plt.subplots(figsize=(18, 6)) # 绘制柱形图 #plt.bar(labels, counts) plt.bar(labels, counts, width=0.4, align='center', label='Data 1') plt.bar(labels1, counts1, width=0.4, align='center', label='Data 2') 2个柱子合并了能不能分开
可以分开绘制,只需要将绘制柱状图的代码分别写在两个子图中即可。可以参考如下代码:
```
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 6))
# 绘制第一个子图
hist, edges = pd.cut(data, bins=bins, right=False, include_lowest=True, retbins=True)
hist1, edges1 = pd.cut(data1, bins=bins, right=False, include_lowest=True, retbins=True)
counts = hist.value_counts()
counts1 = hist1.value_counts()
counts = counts.reindex(hist.cat.categories)
counts1 = counts1.reindex(hist1.cat.categories)
labels = counts.index.astype(str)
labels1 = counts1.index.astype(str)
ax1.bar(labels, counts, width=0.4, align='center', label='Data 1')
ax1.set_title('Data 1')
# 绘制第二个子图
ax2.bar(labels1, counts1, width=0.4, align='center', label='Data 2')
ax2.set_title('Data 2')
# 添加图例
fig.legend(loc='upper right')
plt.show()
```
这里使用了 `subplots` 函数创建了两个子图,并将绘制柱状图的代码分别写在了两个子图中。同时,为了方便区分两个子图,我在每个子图的标题中添加了不同的数据标识。最后,通过 `fig.legend` 函数添加了图例。
阅读全文