bbx_ls = [] for line in lines: obj = Object3d(line) center = np.array(obj.t) center[2]=center[2]+obj.h # ry=obj.ry heading_angle =-obj.ry - np.pi / 2 R = rotz((heading_angle)) # only boundingbox range = (obj.l, obj.w, obj.h) # all vertical range = (obj.l, obj.w, 10) # print(center,obj.ry,range) bbx = o3d.geometry.OrientedBoundingBox(center, R, range) bbx_ls.append(bbx) # o3d.visualization.draw_geometries([pcd, origin] + bbx_ls) for box in bbx_ls: cropped_cloud = pcd.crop(box) # if set colors # colors = [[0, 255, 0] for i in np.arange(len(cropped_cloud.points))] # cropped_cloud.colors = o3d.utility.Vector3dVector(colors) points = np.array(cropped_cloud.points) print(points.shape) o3d.visualization.draw_geometries([cropped_cloud,box])根据上述截取的部分代码,加代码,提取出目标区域点云数据的x,y,z坐标,不管x和y坐标,只要z坐标,将点汇聚到z轴上,画出直方图,统计高度,每隔0.1米进行划分,横坐标为高度,纵坐标为点的数量。
时间: 2024-01-03 19:03:50 浏览: 156
可以按照以下方式补充代码:
```
# 声明一个列表,存储所有点的z坐标
z_list = []
for box in bbx_ls:
cropped_cloud = pcd.crop(box)
points = np.array(cropped_cloud.points)
# 将所有点的z坐标加入列表
z_list.extend(points[:, 2])
# 统计直方图
hist, bin_edges = np.histogram(z_list, bins=np.arange(0, max(z_list) + 0.1, 0.1))
# 画出直方图
plt.bar(bin_edges[:-1], hist, width=0.1)
plt.xlabel("Height (m)")
plt.ylabel("Number of points")
plt.show()
```
这段代码会将所有目标区域点云数据中的点的z坐标加入一个列表中,然后使用 `numpy` 库的 `histogram` 函数统计直方图,步长为0.1米,最大高度为所有点中的最大z坐标。最后使用 `matplotlib` 库画出直方图。
相关问题
for i in np.arange(len(radar_lines)): radar_line=radar_lines[i] pcd_line=pcd_lines[i] pcd_obj = Object3d(pcd_line) center = np.array(pcd_obj.t) center[2] = center[2]+pcd_obj.h # ry=obj.ry heading_angle = -pcd_obj.ry - np.pi / 2 R = rotz((heading_angle)) # only boundingbox range = (pcd_obj.l, pcd_obj.w, pcd_obj.h) # all vertical range = (pcd_obj.l, pcd_obj.w, 10) # print(center,obj.ry,range) bbx = o3d.geometry.OrientedBoundingBox(center, R, range) cropped_cloud = pcd.crop(bbx) # if set colors # colors = [[0, 255, 0] for i in np.arange(len(cropped_cloud.points))] # cropped_cloud.colors = o3d.utility.Vector3dVector(colors) o3d.visualization.draw_geometries([cropped_cloud, bbx]) print(pcd_obj.h) radar_obj = Object2d(radar_line) center = [radar_obj.box2d[0], radar_obj.box2d[1]] w = radar_obj.box2d[2] h = radar_obj.box2d[3] angle = radar_obj.angle # rect = cv2.minAreaRect(cnt) box = cv2.boxPoints((center, (w, h), angle)) print(box) box = np.int0(box) cv2.drawContours(im, [box], 0, (0, 0, 255), 2) mask = np.zeros_like(im) # 使用旋转框的角点绘制多边形掩膜 cv2.drawContours(mask, [box], 0, (255, 255, 255), -1) # 使用掩膜提取旋转框内的像素 masked_image = cv2.bitwise_and(im, mask) cv2.imshow("2d bbx", masked_image) cv2.waitKey(0) cv2.destroyAllWindows()
这段代码是用Python编写的,主要是处理雷达和点云数据、绘制3D边界框和2D包围框以及提取像素等操作。具体来说,它的主要流程如下:
1. 遍历每个雷达线和点云线,分别获取对象中心、朝向角度和边界框大小等信息。
2. 根据对象的朝向角度旋转点云,截取点云中对应边界框范围内的点云数据。
3. 绘制3D边界框,并显示出来。
4. 获取雷达数据中的2D边界框信息,并绘制2D包围框。
5. 利用掩膜提取2D包围框内的像素,并显示出来。
这段代码可能是在处理自动驾驶中使用到的,可以帮助自动驾驶车辆检测周围环境,做出合适的行驶决策。
阅读全文