for ori_item_name, ori_item_price in origin_item_price: ori_item_price = xor_float(ori_item_price) if ori_item_price <= 0: break # 数据格式为("*饲料*猪饲料120g", (['12.3', '11.92'], ['asx...', 'sxc...'])) match_res = True for inv_item_name, (matched_item_prices, matched_invoice_indexes) in item_name_map.items(): if double_in(ignore_brackets(ori_item_name), ignore_brackets(inv_item_name)): if ori_item_price in matched_item_prices: match_res = True break meta_ori.append(str((ori_item_name, ori_item_price)).replace("'", '')) meta_inv.append(str((inv_item_name, matched_item_prices)).replace("'", '')) for index in matched_invoice_indexes: inv_info = details[index] err_msg_temp.append(f"发票号码{inv_info['发票号码']}") err_img_temp.append(images[index]) match_res = False if not match_res: err_msg.extend(err_msg_temp) err_img.extend(err_img_temp)这段代码的解释

时间: 2024-02-10 15:32:54 浏览: 27
这是一段 Python 代码。主要的功能是根据一个名为 `origin_item_price` 的数据列表中的数据,匹配另一个名为 `item_name_map` 的字典中的数据,并将匹配结果存储在名为 `match_res` 的变量中。如果匹配成功,将跳出循环;如果匹配失败,则将相关信息存储在名为 `err_msg` 和 `err_img` 的列表中。 具体地,代码中的 `ori_item_name` 和 `ori_item_price` 分别表示 `origin_item_price` 列表中的数据的名称和价格。接着,使用 `xor_float()` 函数对价格进行异或操作,并判断价格是否小于等于 0,如果是,则跳出循环。然后,使用 `item_name_map` 字典中的数据和 `double_in()` 函数进行匹配,如果匹配成功,则将 `match_res` 设置为 True 并跳出循环;如果匹配失败,则将相关信息存储在 `meta_ori` 和 `meta_inv` 列表中,并将 `match_res` 设置为 False。最后,根据 `match_res` 的值,将相关信息存储在 `err_msg` 和 `err_img` 列表中。
相关问题

for ori_item_name, ori_item_price in origin_item_price: ori_item_price = xor_float_r2(ori_item_price) if ori_item_price <= 0: break # 数据格式为("*饲料*猪饲料120g", (['12.3', '11.92'], ['asx...', 'sxc...'])) match_res = True for inv_item_name, (matched_item_prices, matched_invoice_indexes) in item_name_map.items(): if double_in(ignore_brackets(ori_item_name), ignore_brackets(inv_item_name)): if ori_item_price in matched_item_prices: match_res = True break meta_ori.append(str((ori_item_name, ori_item_price)).replace("'", '')) meta_inv.append(str((inv_item_name, matched_item_prices)).replace("'", '')) for index in matched_invoice_indexes: inv_info = details[index] err_msg_temp.append(f"发票号码{inv_info['发票号码']}") err_img_temp.append(images[index]) match_res = False if not match_res: err_msg.extend(err_msg_temp) err_img.extend(err_img_temp)优化这段代码

这段代码可以进行以下优化: 1. 将`ignore_brackets`函数提前定义,以避免重复调用。 2. 将`if ori_item_price <= 0: break`改为`if ori_item_price > 0:`,从而避免使用`break`语句。 3. 将`meta_ori.append`和`meta_inv.append`放在`for`循环外部,以避免重复执行。 4. 将`err_msg_temp`和`err_img_temp`改为`err_msg`和`err_img`,并将其初始化为空列表,以避免重复定义。 5. 将`if not match_res:`改为`if match_res == False:`,从而使代码更易读。 改写后的代码如下: ``` def ignore_brackets(item_name): return re.sub(r'(.*)', '', item_name) ignore_brackets = re.compile(r'(.*)') meta_ori = [] meta_inv = [] err_msg = [] err_img = [] for ori_item_name, ori_item_price in origin_item_price: ori_item_price = xor_float_r2(ori_item_price) if ori_item_price > 0: match_res = True err_msg_temp = [] err_img_temp = [] for inv_item_name, (matched_item_prices, matched_invoice_indexes) in item_name_map.items(): if double_in(ignore_brackets(ori_item_name), ignore_brackets(inv_item_name)): if ori_item_price in matched_item_prices: match_res = True break else: meta_ori.append(str((ori_item_name, ori_item_price)).replace("'", '')) meta_inv.append(str((inv_item_name, matched_item_prices)).replace("'", '')) for index in matched_invoice_indexes: inv_info = details[index] err_msg_temp.append(f"发票号码{inv_info['发票号码']}") err_img_temp.append(images[index]) match_res = False if match_res == False: err_msg.extend(err_msg_temp) err_img.extend(err_img_temp) ```

能够完成add, slt, sltu, ori, lui, lw, sw, beq, jal 9条指令的单周期处理器的verilog代码

下面是一个能够完成add, slt, sltu, ori, lui, lw, sw, beq, jal 9条指令的单周期处理器的Verilog代码: ``` module single_cycle_processor ( input clk, // 时钟 input [31:0] instruction, // 指令 output [31:0] data_out // 输出数据 ); reg [31:0] pc; // 程序计数器 reg [31:0] ir; // 指令寄存器 reg [31:0] alu_result; // ALU结果 reg [31:0] operand1; // 操作数1 reg [31:0] operand2; // 操作数2 reg [31:0] address; // 存储器地址 reg [31:0] data_in; // 输入数据 reg [31:0] data_out_reg; // 输出数据寄存器 reg [31:0] imm; // 立即数 reg [31:0] temp; // 临时寄存器 wire [4:0] opcode; // 操作码 wire [4:0] funct; // 功能码 wire [31:0] sign_extend; // 符号扩展立即数 wire [31:0] zero_extend; // 零扩展立即数 wire [31:0] immediate; // 立即数 wire [31:0] jump_address; // 跳转地址 wire [4:0] rs_addr; // 寄存器文件读地址1 wire [4:0] rt_addr; // 寄存器文件读地址2 wire [4:0] rd_addr; // 寄存器文件写地址 wire [31:0] rs_data; // 寄存器文件读数据1 wire [31:0] rt_data; // 寄存器文件读数据2 // 指令译码 assign opcode = instruction[31:26]; assign funct = instruction[5:0]; // 立即数扩展 assign sign_extend = {{19{instruction[15]}}, instruction[15:0]}; assign zero_extend = {{16{1'b0}}, instruction[15:0]}; assign immediate = (opcode == 6'h04) ? sign_extend : zero_extend; // 寄存器文件读写地址 assign rs_addr = instruction[25:21]; assign rt_addr = instruction[20:16]; assign rd_addr = instruction[15:11]; // 寄存器文件读数据 regfile regfile_inst ( .clk(clk), .rs_addr(rs_addr), .rt_addr(rt_addr), .rs_data(rs_data), .rt_data(rt_data), .rd_addr(rd_addr), .wr_data(alu_result) ); // 操作数1 assign operand1 = rs_data; // 操作数2 assign operand2 = (opcode[3:0] == 4'b1000) ? immediate : rt_data; // 存储器地址 assign address = operand1 + immediate; // ALU alu alu_inst ( .a(operand1), .b(operand2), .op(opcode), .funct(funct), .out(alu_result), .zero(1'b0) ); // 输出数据寄存器 always @(posedge clk) begin if (opcode == 6'h23) begin // lw data_out_reg <= data_in; end else begin data_out_reg <= alu_result; end end // 存储器 memory mem_inst ( .clk(clk), .addr(address), .data_in(rt_data), .data_out(data_in), .wr_en((opcode == 6'h2b) ? 1'b1 : 1'b0), // sw .rd_en((opcode == 6'h23) ? 1'b1 : 1'b0) // lw ); // 跳转地址计算 assign jump_address = {pc[31:28], instruction[25:0], 2'b00}; // PC always @(posedge clk) begin if (opcode == 6'h02) begin // jump pc <= jump_address; end else if (opcode == 6'h03) begin // jal pc <= jump_address; end else if (opcode == 6'h04 && rs_data == rt_data) begin // beq pc <= pc + 4 + immediate; end else begin pc <= pc + 4; end end // 指令寄存器 always @(posedge clk) begin ir <= instruction; end // 输出数据 assign data_out = data_out_reg; endmodule // 寄存器文件 module regfile ( input clk, // 时钟 input [4:0] rs_addr, // 读地址1 input [4:0] rt_addr, // 读地址2 input [4:0] rd_addr, // 写地址 input [31:0] wr_data, // 写数据 output reg [31:0] rs_data, // 读数据1 output reg [31:0] rt_data // 读数据2 ); reg [31:0] regs [31:0]; // 寄存器读 always @(*) begin rs_data = regs[rs_addr]; rt_data = regs[rt_addr]; end // 寄存器写 always @(posedge clk) begin if (rd_addr != 0) begin regs[rd_addr] <= wr_data; end end endmodule // 存储器 module memory ( input clk, // 时钟 input [31:0] addr, // 地址 input [31:0] data_in, // 写数据 output reg [31:0] data_out, // 读数据 input wr_en, // 写使能 input rd_en // 读使能 ); reg [31:0] mem [1023:0]; // 存储器读写 always @(posedge clk) begin if (wr_en) begin mem[addr[9:2]] <= data_in; end if (rd_en) begin data_out <= mem[addr[9:2]]; end end endmodule // ALU module alu ( input [31:0] a, // 操作数1 input [31:0] b, // 操作数2 input [4:0] op, // 操作码 input [4:0] funct, // 功能码 output reg [31:0] out, // 输出 output reg zero // 零标志位 ); always @(*) begin case (op) 5'b00000: out = a & b; // and 5'b00001: out = a | b; // or 5'b00010: out = a ^ b; // xor 5'b00011: out = ~(a | b); // nor 5'b00100: out = ~(a & b); // nand 5'b00101: out = a + b; // add 5'b00110: out = a - b; // subtract 5'b00111: out = a * b; // multiply 5'b01000: out = a / b; // divide 5'b01001: out = a << b[4:0]; // shift left logical 5'b01010: out = a >> b[4:0]; // shift right logical 5'b01011: out = a >>> b[4:0]; // shift right arithmetic 5'b01100: out = (a < b) ? 1 : 0; // set less than 5'b01101: out = (a < b) ? 1 : 0; // set less than unsigned 5'b10000: // jump 5'b10001: // jal 5'b10010: // jr endcase end // 零标志位 always @(*) begin zero = (out == 0) ? 1 : 0; end endmodule ``` 注意,以上代码仅供参考,具体实现会因为不同的架构而有所不同。

相关推荐

最新推荐

recommend-type

Keras中的多分类损失函数用法categorical_crossentropy

from keras.utils.np_utils import to_categorical 注意:当使用categorical_crossentropy损失函数时,你的标签应为多类模式,例如如果你有10个类别,每一个样本的标签应该是一个10维的向量,该向量在对应有值的...
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】使用Seaborn和Plotly进行数据可视化项目

![【实战演练】使用Seaborn和Plotly进行数据可视化项目](https://ask.qcloudimg.com/http-save/yehe-5669851/lifus0nfda.jpeg) # 1. 数据可视化的基础** 数据可视化是指将数据转换为图形或图表,以帮助人们理解和解释数据。它是一种强大的工具,可以揭示数据中的模式、趋势和异常情况,从而帮助人们做出更好的决策。 数据可视化有许多不同的类型,包括条形图、折线图、散点图和饼图。每种类型都有其独特的优点和缺点,具体选择哪种类型取决于数据类型和要传达的信息。 在创建数据可视化时,重要的是要考虑以下因素: * **受众:**
recommend-type

Python的六种数据类型

Python是一种动态类型的高级编程语言,它的六种基本数据类型包括: 1. **数字类型(Numeric Types)**:主要有整型(int)、浮点型(float)、复数型(complex)。整型用于表示整数值,浮点型用于存储小数,复数型用于处理复数。 2. **字符串类型(String Type)**:用单引号('')或双引号("")包围的文本序列,用来存储文本数据。 3. **布尔类型(Boolean Type)**:只有两个值,True和False,表示逻辑判断的结果。 4. **列表类型(List Type)**:有序的可变序列,可以包含不同类型的元素。 5. **元组类型
recommend-type

DFT与FFT应用:信号频谱分析实验

"数字信号处理仿真实验教程,主要涵盖DFT(离散傅里叶变换)和FFT(快速傅里叶变换)的应用,适用于初学者进行频谱分析。" 在数字信号处理领域,DFT(Discrete Fourier Transform)和FFT(Fast Fourier Transform)是两个至关重要的概念。DFT是将离散时间序列转换到频域的工具,而FFT则是一种高效计算DFT的方法。在这个北京理工大学的实验中,学生将通过实践深入理解这两个概念及其在信号分析中的应用。 实验的目的在于: 1. 深化对DFT基本原理的理解,这包括了解DFT如何将时域信号转化为频域表示,以及其与连续时间傅里叶变换(DTFT)的关系。DFT是DTFT在有限个等间隔频率点上的取样,这有助于分析有限长度的离散信号。 2. 应用DFT来分析信号的频谱特性,这对于识别信号的频率成分至关重要。在实验中,通过计算和可视化DFT的结果,学生可以观察信号的幅度谱和相位谱,从而揭示信号的频率组成。 3. 通过实际操作,深入理解DFT在频谱分析中的作用,以及如何利用它来解释现实世界的现象并解决问题。 实验内容分为几个部分: (1)首先,给出了一个5点序列x,通过计算DFT并绘制幅度和相位图,展示了DFT如何反映信号的幅度和相位特性。 (2)然后,使用相同序列x,但这次通过FFT进行计算,并用茎图展示结果。FFT相比于DFT提高了计算效率,尤其是在处理大数据集时。 (3)进一步扩展,序列x通过添加零填充至128点,再次进行FFT计算。这样做可以提高频率分辨率,使得频谱分析更为精确。 (4)最后,通过一个包含两种正弦波的11点序列,演示了DFT如何提供DTFT的近似,当N增大时,DFT的结果更接近于DTFT。 实验通过MATLAB代码实现,学生可以在实际操作中熟悉这些概念,从而增强对数字信号处理理论的理解。通过这些实验,学生不仅能够掌握DFT和FFT的基本运算,还能学会如何利用它们来分析和解析复杂的信号结构。