以上算法,使用CNN网络做
时间: 2023-11-10 17:21:26 浏览: 107
如果您想使用CNN网络进行图像匹配和质量评价,可以考虑使用基于深度学习的图像匹配方法,例如基于Siamese网络的图像匹配方法。下面是一个简单的基于Siamese网络的图像匹配代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import transforms, datasets
from torch.utils.data import DataLoader, Dataset
class SiameseNetwork(nn.Module):
def __init__(self):
super(SiameseNetwork, self).__init__()
# 定义网络结构
self.conv1 = nn.Conv2d(1, 64, 10)
self.pool1 = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(64, 128, 7)
self.pool2 = nn.MaxPool2d(2)
self.conv3 = nn.Conv2d(128, 128, 4)
self.pool3 = nn.MaxPool2d(2)
self.conv4 = nn.Conv2d(128, 256, 4)
self.fc1 = nn.Linear(256 * 6 * 6, 4096)
self.fc2 = nn.Linear(4096, 1)
def forward_once(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.pool1(x)
x = self.conv2(x)
x = F.relu(x)
x = self.pool2(x)
x = self.conv3(x)
x = F.relu(x)
x = self.pool3(x)
x = self.conv4(x)
x = F.relu(x)
x = x.view(-1, 256 * 6 * 6)
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
return x
def forward(self, x1, x2):
# 分别输入两张图片,计算输出结果
output1 = self.forward_once(x1)
output2 = self.forward_once(x2)
return output1, output2
class SiameseDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
def __getitem__(self, index):
# 随机选择一对图像,并返回它们的标签
img1, label1 = self.dataset[index]
while True:
# 避免选择相同的图像
index2 = torch.randint(0, len(self.dataset), (1,)).item()
if index2 != index:
break
img2, label2 = self.dataset[index2]
if label1 == label2:
label = torch.FloatTensor([1])
else:
label = torch.FloatTensor([0])
img1 = self.transform(img1)
img2 = self.transform(img2)
return img1, img2, label
def __len__(self):
return len(self.dataset)
# 训练模型
def train(model, train_loader, optimizer, criterion, epoch):
for batch_idx, (data1, data2, label) in enumerate(train_loader):
optimizer.zero_grad()
output1, output2 = model(data1, data2)
loss = criterion(output1, output2, label)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data1), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
# 测试模型
def test(model, test_loader):
with torch.no_grad():
correct = 0
total = 0
for data1, data2, label in test_loader:
output1, output2 = model(data1, data2)
pred = (output1 < output2).float()
correct += (pred == label).sum().item()
total += label.size(0)
print('Test Accuracy: {:.2f}%'.format(100. * correct / total))
# 计算损失函数
class ContrastiveLoss(nn.Module):
def __init__(self, margin=1.0):
super(ContrastiveLoss, self).__init__()
self.margin = margin
def forward(self, output1, output2, label):
euclidean_distance = F.pairwise_distance(output1, output2)
loss_contrastive = torch.mean((label) * torch.pow(euclidean_distance, 2) +
(1 - label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2))
return loss_contrastive
# 加载数据
train_dataset = datasets.ImageFolder('train', transform=transforms.ToTensor())
train_dataset = SiameseDataset(train_dataset)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_dataset = datasets.ImageFolder('test', transform=transforms.ToTensor())
test_dataset = SiameseDataset(test_dataset)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
# 初始化模型和优化器
model = SiameseNetwork()
optimizer = optim.Adam(model.parameters(), lr=0.0001)
criterion = ContrastiveLoss()
# 训练模型
for epoch in range(1, 10):
train(model, train_loader, optimizer, criterion, epoch)
test(model, test_loader)
```
使用Siamese网络进行图像匹配,需要定义一个SiameseNetwork类,并实现forward_once函数和forward函数。其中forward_once函数实现了单个图像的前向传播,forward函数实现了两个图像的前向传播。在SiameseDataset中定义了数据集的读取方式,每次随机选择一对图像进行训练。训练过程中使用ContrastiveLoss计算损失函数,并使用Adam优化器进行优化。最终训练出的模型可以用于图像匹配和质量评价。
阅读全文