修改完善下列代码,得到十折交叉验证三分类的平均每一折的分类报告,三分类的每一类的平均每一折的混淆矩阵,平均每一折的“micro”和“macro”auc值和roc曲线。min_max_scaler = MinMaxScaler() X_train1, X_test1 = x[train_id], x[test_id] y_train1, y_test1 = y[train_id], y[test_id] # apply the same scaler to both sets of data X_train1 = min_max_scaler.fit_transform(X_train1) X_test1 = min_max_scaler.transform(X_test1) # convert to numpy arrays X_train1 = np.array(X_train1) X_test1 = np.array(X_test1) # train gcForest config = get_config() tree = gcForest(config) tree.fit(X_train1, y_train1)
时间: 2023-12-24 09:13:24 浏览: 101
这是一个使用gcForest进行分类的代码,需要补充一些内容才能完成您的要求。
首先,您需要导入必要的库:
```python
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, roc_curve
import numpy as np
from gcforest.gcforest import GCForest
from gcforest.utils.config_utils import load_json, get_config
```
然后,您需要定义一个函数,该函数将返回每一折的分类报告,混淆矩阵,micro和macro auc值,以及roc曲线。
```python
def evaluate_model(X_train, y_train, X_test, y_test):
# apply the same scaler to both sets of data
min_max_scaler = MinMaxScaler()
X_train = min_max_scaler.fit_transform(X_train)
X_test = min_max_scaler.transform(X_test)
# train gcForest
config = get_config()
tree = GCForest(config)
tree.fit(X_train, y_train)
# predict on test set
y_pred = tree.predict(X_test)
# calculate classification report and confusion matrix for each class
class_names = np.unique(y_train)
reports = []
matrices = []
for class_name in class_names:
mask_train = y_train == class_name
mask_test = y_test == class_name
y_train_class = np.zeros_like(y_train)
y_train_class[mask_train] = 1
y_test_class = np.zeros_like(y_test)
y_test_class[mask_test] = 1
y_pred_class = np.zeros_like(y_pred)
y_pred_class[y_pred == class_name] = 1
reports.append(classification_report(y_test_class, y_pred_class))
matrices.append(confusion_matrix(y_test_class, y_pred_class))
# calculate micro and macro AUC
y_scores = tree.predict_proba(X_test)
micro_auc = roc_auc_score(y_test, y_scores, multi_class='ovo', average='micro')
macro_auc = roc_auc_score(y_test, y_scores, multi_class='ovo', average='macro')
# calculate ROC curve
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(len(class_names)):
fpr[i], tpr[i], _ = roc_curve(y_test_class[:, i], y_scores[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# return evaluation results
return reports, matrices, micro_auc, macro_auc, fpr, tpr, roc_auc
```
最后,您需要将数据分成10折,依次对每一折进行评估,并计算平均值。
```python
# load data
X = np.load('X.npy')
y = np.load('y.npy')
# split data into 10 folds
from sklearn.model_selection import KFold
kf = KFold(n_splits=10, shuffle=True, random_state=42)
reports_list = []
matrices_list = []
micro_auc_list = []
macro_auc_list = []
fpr_list = []
tpr_list = []
roc_auc_list = []
for train_id, test_id in kf.split(X):
X_train, X_test = X[train_id], X[test_id]
y_train, y_test = y[train_id], y[test_id]
reports, matrices, micro_auc, macro_auc, fpr, tpr, roc_auc = evaluate_model(X_train, y_train, X_test, y_test)
reports_list.append(reports)
matrices_list.append(matrices)
micro_auc_list.append(micro_auc)
macro_auc_list.append(macro_auc)
fpr_list.append(fpr)
tpr_list.append(tpr)
roc_auc_list.append(roc_auc)
# calculate average evaluation results
reports_avg = np.mean(reports_list, axis=0)
matrices_avg = np.mean(matrices_list, axis=0)
micro_auc_avg = np.mean(micro_auc_list)
macro_auc_avg = np.mean(macro_auc_list)
fpr_avg = np.mean(fpr_list, axis=0)
tpr_avg = np.mean(tpr_list, axis=0)
roc_auc_avg = np.mean(roc_auc_list, axis=0)
```
请注意,上面的代码是示例代码,需要根据您的数据进行适当修改。
阅读全文