opencv轮廓提取坐标点

时间: 2023-09-18 17:08:31 浏览: 806
使用OpenCV提取轮廓的函数是 `cv2.findContours()`,它会返回轮廓的坐标点信息。下面是一个简单的例子: ```python import cv2 # 读取图像 img = cv2.imread('image.jpg') # 转换为灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化图像 ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) # 提取轮廓 contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # 遍历每个轮廓 for cnt in contours: # 遍历轮廓中的每个点 for point in cnt: x, y = point[0] # 在图像上绘制点 cv2.circle(img, (x, y), 1, (0, 0, 255), -1) # 显示图像 cv2.imshow('image', img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 这个例子会将图像中的轮廓的所有点提取出来,并在原图像上用红色圆圈标出来。
相关问题

OpenCV C++ 轮廓提取坐标和中心点的代码

### 回答1: 以下是提取轮廓坐标和中心点的代码示例: ``` #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main() { Mat src = imread("image.jpg", IMREAD_GRAYSCALE); Mat binary; threshold(src, binary, 100, 255, THRESH_BINARY); vector<vector<Point>> contours; vector<Vec4i> hierarchy; findContours(binary, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE); for (size_t i = ; i < contours.size(); i++) { // 计算轮廓的中心点 Moments mu = moments(contours[i]); Point2f center(mu.m10 / mu.m00, mu.m01 / mu.m00); cout << "Contour " << i << " center: " << center << endl; // 输出轮廓的坐标 for (size_t j = ; j < contours[i].size(); j++) { cout << "Contour " << i << " point " << j << ": " << contours[i][j] << endl; } } return ; } ``` 这段代码可以读取一张灰度图像,提取其轮廓,并输出每个轮廓的坐标和中心点。 ### 回答2: 以下是使用OpenCV C进行轮廓提取,并获取轮廓坐标和中心点的代码: ```c #include <opencv2/opencv.hpp> using namespace cv; int main() { // 读取图像 Mat image = imread("example.jpg", IMREAD_GRAYSCALE); // 阈值化图像 threshold(image, image, 128, 255, THRESH_BINARY); // 查找轮廓 std::vector<std::vector<Point>> contours; findContours(image, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); // 遍历每个轮廓 for (int i = 0; i < contours.size(); i++) { // 绘制轮廓 drawContours(image, contours, i, Scalar(255), 2); // 计算轮廓的中心点 Moments m = moments(contours[i]); Point center(m.m10 / m.m00, m.m01 / m.m00); // 输出轮廓坐标和中心点 printf("Contour %d:\n", i); for (int j = 0; j < contours[i].size(); j++) { printf("Point %d: (%d, %d)\n", j, contours[i][j].x, contours[i][j].y); } printf("Center: (%d, %d)\n", center.x, center.y); } // 显示结果 imshow("Contours", image); waitKey(0); return 0; } ``` 请注意,您需要将图像文件名更改为实际使用的图像文件,并根据需要进行其他适应性更改。此代码可用于提取图像中的轮廓,然后计算每个轮廓的中心点,并打印出轮廓坐标和中心点的值。 ### 回答3: 确定OpenCV版本: 首先,需要确定使用的OpenCV版本是C++还是C。如果是C++版本,可以使用cv::findContours函数来提取轮廓坐标和中心点。 C++代码示例: ```cpp #include <opencv2/opencv.hpp> #include <iostream> int main() { // 加载图像 cv::Mat image = cv::imread("input.png", cv::IMREAD_GRAYSCALE); // 二值化图像 cv::Mat binaryImage; cv::threshold(image, binaryImage, 128, 255, cv::THRESH_BINARY); // 寻找轮廓 std::vector<std::vector<cv::Point>> contours; std::vector<cv::Vec4i> hierarchy; cv::findContours(binaryImage, contours, hierarchy, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE); // 遍历每个轮廓 for (int i = 0; i < contours.size(); i++) { // 计算轮廓中心点坐标 cv::Moments moments = cv::moments(contours[i]); cv::Point center(moments.m10 / moments.m00, moments.m01 / moments.m00); // 打印轮廓坐标和中心点坐标 std::cout << "Contour #" << i << std::endl; for (int j = 0; j < contours[i].size(); j++) { std::cout << "Coordinate: (" << contours[i][j].x << ", " << contours[i][j].y << ")" << std::endl; } std::cout << "Center: (" << center.x << ", " << center.y << ")" << std::endl; } return 0; } ``` 以上示例代码假设输入的图像是灰度图像,二值化阈值为128,且只提取外部轮廓(RETR_EXTERNAL)。 如果使用的是C版本的OpenCV,可以参考以下代码进行相应修改: C代码示例: ```c #include <opencv2/opencv.hpp> #include <opencv2/highgui/highgui_c.h> #include <stdio.h> int main() { // 加载图像 IplImage* image = cvLoadImage("input.png", CV_LOAD_IMAGE_GRAYSCALE); CvMat* binaryImage = cvCreateMat(image->height, image->width, CV_8UC1); // 二值化图像 cvThreshold(image, binaryImage, 128, 255, CV_THRESH_BINARY); // 寻找轮廓 CvMemStorage* storage = cvCreateMemStorage(0); CvSeq* contours = NULL; cvFindContours(binaryImage, storage, &contours, sizeof(CvContour), CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); // 遍历每个轮廓 int i = 0; for (CvSeq* contour = contours; contour != NULL; contour = contour->h_next) { CvMoments moments; cvMoments(contour, &moments); int cX = (int)(moments.m10 / moments.m00); int cY = (int)(moments.m01 / moments.m00); printf("Contour #%d\n", i++); for (int j = 0; j < contour->total; j++) { CvPoint* pt = (CvPoint*)cvGetSeqElem(contour, j); printf("Coordinate: (%d, %d)\n", pt->x, pt->y); } printf("Center: (%d, %d)\n", cX, cY); } cvReleaseImage(&image); cvReleaseMat(&binaryImage); cvReleaseMemStorage(&storage); return 0; } ``` 请注意,在C版本的OpenCV中,使用的是IplImage和CvMat来表示图像,使用CvMemStorage和CvSeq来处理轮廓。 以上两个示例代码中的input.png是作为输入图像的文件名。你需要根据实际图像的文件名进行修改。

OpenCV C++ 轮廓提取坐标和中心点并在原图中显示的代码

### 回答1: 以下是 OpenCV C 语言的轮廓提取坐标和中心点并在原图中显示的代码: ```c #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main() { Mat src = imread("test.jpg"); Mat gray, binary; cvtColor(src, gray, COLOR_BGR2GRAY); threshold(gray, binary, , 255, THRESH_BINARY | THRESH_OTSU); vector<vector<Point>> contours; vector<Vec4i> hierarchy; findContours(binary, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point()); Mat dst = src.clone(); for (size_t i = ; i < contours.size(); i++) { drawContours(dst, contours, i, Scalar(, , 255), 2, 8, hierarchy); Moments mu = moments(contours[i], false); Point2f center(mu.m10 / mu.m00, mu.m01 / mu.m00); circle(dst, center, 2, Scalar(, 255, ), 2, 8, ); cout << "Contour " << i << " center: " << center << endl; } imshow("src", src); imshow("dst", dst); waitKey(); return ; } ``` 希望能对你有所帮助。 ### 回答2: 下面是一个使用OpenCV C++库来提取图像轮廓、计算轮廓中心点并在原图中显示的示例代码: ```cpp #include <opencv2/opencv.hpp> using namespace cv; int main() { // 读取图像 Mat image = imread("image.jpg", IMREAD_COLOR); // 灰度化图像 Mat gray; cvtColor(image, gray, COLOR_BGR2GRAY); // 二值化图像 Mat binary; threshold(gray, binary, 100, 255, THRESH_BINARY); // 查找轮廓 std::vector<std::vector<Point>> contours; findContours(binary, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); // 绘制轮廓 drawContours(image, contours, -1, Scalar(0, 0, 255), 2); for (const auto& contour : contours) { // 计算轮廓的矩 Moments moments = moments(contour); double cx = moments.m10 / moments.m00; double cy = moments.m01 / moments.m00; // 绘制中心点 circle(image, Point(cx, cy), 4, Scalar(0, 255, 0), -1); } // 显示结果图像 imshow("Contours", image); waitKey(0); return 0; } ``` 代码中,首先读取图像,并将其转换为灰度图像。然后,通过二值化处理将图像转换为黑白图像。 之后,使用`findContours`函数查找图像中的轮廓。参数`RETR_EXTERNAL`表示只检测最外层的轮廓,`CHAIN_APPROX_SIMPLE`表示使用简化的轮廓表示方法。 接着,使用`drawContours`函数在原图像上绘制轮廓线。 对于每个轮廓,通过计算矩的方式计算出轮廓的中心点坐标。最后,使用`circle`函数绘制出每个轮廓的中心点。 最后,将处理后的图像显示出来,等待用户按键退出。 ### 回答3: 以下是使用OpenCV C库进行轮廓提取、坐标和中心点计算,并在原图中显示的示例代码: ```c #include <opencv2/opencv.hpp> using namespace cv; int main() { // 读取图像 Mat image = imread("image.jpg", IMREAD_COLOR); // 灰度图 Mat gray; cvtColor(image, gray, COLOR_BGR2GRAY); // 二值化 Mat binary; threshold(gray, binary, 128, 255, THRESH_BINARY); // 轮廓检测 std::vector<std::vector<Point>> contours; std::vector<Vec4i> hierarchy; findContours(binary, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); // 遍历轮廓 for (int i = 0; i < contours.size(); i++) { // 绘制轮廓 drawContours(image, contours, i, Scalar(0, 0, 255), 2); // 计算轮廓的边界框 Rect bbox = boundingRect(contours[i]); // 提取坐标 Point tl = bbox.tl(); Point br = bbox.br(); // 计算中心点 Point center = (tl + br) / 2; // 在原图中显示坐标和中心点 putText(image, "Top Left: (" + std::to_string(tl.x) + ", " + std::to_string(tl.y) + ")", tl, FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0), 1); putText(image, "Bottom Right: (" + std::to_string(br.x) + ", " + std::to_string(br.y) + ")", br, FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0), 1); putText(image, "Center: (" + std::to_string(center.x) + ", " + std::to_string(center.y) + ")", center, FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0), 1); } // 显示结果 imshow("Contours", image); waitKey(0); return 0; } ``` 此示例代码通过读取名为"image.jpg"的图像,并使用OpenCV进行轮廓提取、坐标和中心点计算。然后,使用绘制轮廓和putText函数将坐标和中心点信息显示在原图中。最后,通过imshow函数显示结果。
阅读全文

相关推荐

最新推荐

recommend-type

python-opencv获取二值图像轮廓及中心点坐标的代码

本文将详细介绍如何使用OpenCV获取二值图像的轮廓以及这些轮廓的中心点坐标。 首先,我们要加载二值图像。二值图像是一种黑白图像,通常由0(背景)和255(前景)两个值组成。在Python中,我们可以使用`cv2.imread...
recommend-type

使用opencv中匹配点对的坐标提取方式

补充知识部分涉及了如何在OpenCV中获取连通域的所有坐标点。这通常在处理二值图像时非常有用,例如在图像分割或物体识别中。以下是基本步骤: 1. 加载或创建图像,并将其转换为灰度图像。 2. 应用阈值操作来将图像...
recommend-type

基于OpenCV的圆形标记点的提取

总结来说,本文介绍了一种利用OpenCV进行圆形标记点提取的方法,该方法通过一系列图像处理步骤,能够有效地在复杂背景下识别并提取出圆形标记点的中心坐标,适用于多视点云拼接和其他圆形物体识别的应用。...
recommend-type

opencv python 图像轮廓/检测轮廓/绘制轮廓的方法

检测到的轮廓被存储在一个Python列表中,每个轮廓由其边界点的坐标表示。`hierarchy`则包含了轮廓之间的层次关系。 一旦检测到轮廓,可以使用`drawContours()`函数进行绘制。这个函数的语法如下: ```python cv2....
recommend-type

python用opencv完成图像分割并进行目标物的提取

为了提取目标物,我们可以遍历图像的每个像素点,使用`cv2.pointPolygonTest()` 检查该点是否位于特定轮廓内。如果点在边界内,函数将返回正数;如果在边界上,则返回0;不在边界内则返回负数。根据这个信息,我们...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。