一种新的鲁棒学生t型卡尔曼滤波器matlab代码
时间: 2024-01-20 07:04:50 浏览: 120
以下是一个简单的鲁棒学生t型卡尔曼滤波器的 MATLAB 代码实现:
```matlab
function [xhat, P] = robust_student_t_kalman_filter(y, F, H, Q, R, x0, P0, nu, alpha)
% y: measurement vector
% F: state-transition matrix
% H: observation matrix
% Q: state noise covariance matrix
% R: measurement noise covariance matrix
% x0: initial state estimate
% P0: initial error covariance matrix
% nu: degrees of freedom parameter for Student t-distribution
% alpha: tuning parameter for robustness
% Initialization
n = length(x0);
xhat = zeros(n, length(y));
P = zeros(n, n, length(y));
xhat(:,1) = x0;
P(:,:,1) = P0;
for k = 2:length(y)
% Prediction
xhat(:,k) = F*xhat(:,k-1);
P(:,:,k) = F*P(:,:,k-1)*F' + Q;
% Kalman gain
K = P(:,:,k)*H'/(H*P(:,:,k)*H' + R);
% Robust update
e = y(k) - H*xhat(:,k);
S = (nu+e'*inv(H*P(:,:,k)*H'+R)*e)/(nu+n);
w = sqrt((nu+n)/(nu+S))*(1-alpha*nu/(nu+S));
K = w*K;
% Update
xhat(:,k) = xhat(:,k) + K*e;
P(:,:,k) = (eye(n)-K*H)*P(:,:,k);
end
end
```
其中,输入参数为:
- `y`:测量向量;
- `F`:状态转移矩阵;
- `H`:观测矩阵;
- `Q`:状态噪声协方差矩阵;
- `R`:测量噪声协方差矩阵;
- `x0`:初始状态估计值;
- `P0`:初始误差协方差矩阵;
- `nu`:学生 t 分布的自由度参数;
- `alpha`:鲁棒性调节参数。
输出结果为:
- `xhat`:状态估计向量;
- `P`:误差协方差矩阵序列。
阅读全文