YOLOv5s目标检测算法流程
时间: 2023-08-18 07:46:41 浏览: 154
YOLOv5是一种基于深度学习的目标检测算法,可以用于检测图像或视频中的物体 其中,摔倒识别是一种常见的应用场景,可以用于监控老
YOLOv5s是一种基于深度学习的目标检测算法,其流程可以概括为以下几个步骤:
1. 数据预处理:对输入的图像进行预处理,包括缩放、裁剪、归一化等操作,以便于模型的训练和推理。
2. 模型搭建:使用深度学习框架搭建YOLOv5s模型,包括卷积层、激活函数、池化层等组成的神经网络。
3. 模型训练:使用标注好的训练数据对模型进行训练,调整模型参数,使其能够更好地识别目标。
4. 模型推理:对输入的图像进行前向传播,得到目标检测结果。YOLOv5s采用Anchor-Based的方式进行目标检测,首先生成一系列的锚点,然后将锚点与输入的图像进行匹配,计算出各个锚点所对应的目标框的预测值。最后通过NMS(非极大值抑制)算法筛选出最终的检测结果。
5. 后处理:对检测结果进行后处理,包括筛选、去重、绘制目标框等操作,以便于人类观察和理解。
以上就是YOLOv5s目标检测算法的基本流程。
阅读全文